
УДК 546:661.49:543.22:662.661 ВЗАИМОДЕЙСТВИЕ КАРБОНАТА КАДМИЯ С ПЕРОКСИДНЫМИ СОЕДИНЕНИЯМИ НАТРИЯ

Шаповалов В.В., Мнускина Ю.В. ДонНТУ

Методами термического (ТА), рентгенофазового $(P\Phi A)$ анализов и ИК-спектроскопии изучено самораспространяющееся взаимодействие $CdCO_3$ с Na_2O_2 и NaO_2 . Предложены схемы компонентами. взаимодействия между Установлено, что взаимодействие осуществляется путем обменной реакции и CdCO₃ в быть твердой фазе uможет реализовано самораспространяющаяся реакция.

В предыдущих работах нами установлено [1–3], что во всех пероксидно-солевых системах типа $Na_2O_2(NaO_2)$ — Me_nX_m , где Me катион двух- или трехвалентного металла, а X — SO_4^{-2} , NO_3^{-} , $Cl^$ определяющим является обменное взаимодействие между ионами пероксидных соединений и ионами соли, приводящее к образованию соли натрия и оксида соответствующего металла. Даже в случае пероксидно-перхлоратных систем $Na_2O_2(NaO_2)$ -Ме $(ClO_4)_2$, несмотря на весьма низкие температуры разложение перхлоратов с образованием газообразных веществ, основным процессом, который определяет общий характер реакции, также является обменное взаимодействие между ионами пероксида и соли в конденсированной фазе. Газообразные компоненты разложения перхлоратов не оказывают существенного влияния на взаимодействие перхлоратов с пероксидными соединениями натрия. В то же время при изменении условий (соотношения компонентов, например) или природы соли можно ожидать усиления влияния газообразных продуктов разложения соли на механизм взаимодействия. С этой позиции интерес представляет система CdCO₃-NaO₂. С одной стороны карбонат кадмия характеризуется весьма низкой температурой разложения на оксид кадмия и диоксид углерода. С другой, как известно [4], один из компонентов системы — пероксид натрия способен активно реагировать с СО2. В связи с этим вполне вероятно взаимодействие пероксида натрия с карбонатом кадмия через газовую фазу. Целью работы было установить, какое влияние оказывает газовая фаза на общий характер взаимодействия в системе CdCO₃-NaO₂ (Na₂O₂).

В работе использовали высушенный при 240°C CdCO₃ квалификации «ч». Качество сушки CdCO₃ контролировалось термографически и ИК-спектроскопией. Смеси готовили из фракций

Рис. 1. Термограммы систем при соотношении компонентов: а — Na_2O_2 : $CdCO_3$ = 1:1; б — NaO_2 : $CdCO_3$ = 2:1; в — $CdCO_3$

CdCO₃ с диаметром частиц 0,05 мм. Na₂O₂ и NaO₂ с содержанием активного кислорода 20% и 41% соответственно, использовали без дополнительной подготовки. В качестве инертного разбавителя использовали MgO в форме периклаза. Все образцы готовили в изолированном боксе с $Mg(ClO_4)_2$ качестве осущителя. Определение скорости самораспространяющегося взаимодействия (CPB) осуществлялось на образцах диаметром 30 мм, высотой 50-70 мм и плотностью 1,6-1,8 г/см 3 , исходя из длины образца и времени перемещения фронта горения. Кривые ДТА и ТГ записывали при скорости нагрева град/мин 15 использованием стеклянных тиглей диаметром 5 мм и α -Al₂O₃ в качестве

эталона.

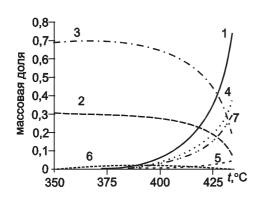
Взаимодействие в условиях ДТА безводного карбоната кадмия с пероксидом натрия начинается при 244° С, с супероксидом натрия при 248° С, сопровождается значительным экзотермическим эффектом и потерей массы 6,4% и 14,6% соответственно (рис. 1a,6). Согласно результатам РФА продуктами взаимодействия являются Na_2CO_3 и CdO. Следует отметить, что начало взаимодействия, не может быть обусловлено разложением карбоната кадмия. Для реакции

$$CdCO_3 \xrightarrow{>320^{\circ}C} CdO + CO_2$$
 (1)

при стандартных условиях ΔG составляет +50,76 кДж/моль. Расчеты с использованием данных [5] показывают, что процесс разложения $CdCO_3$ становится термодинамически возможным при t>320°C, что, как видно, наблюдается в условиях ДТА (рис. 1в). Следовательно, начало реакции пероксидных соединений с карбонатом кадмия не может быть обусловлено разложением последнего.

Учитывая, что супероксид натрия до 240°C разлагается до пероксида, полученным экспериментальным данным вполне соответствует следующая схема взаимодействия в пероксидно-карбонатной системе:

$$NaO_2 \rightarrow Na_2O_2 + O_2$$


$$CdCO_3+Na_2O_2 \xrightarrow{>244^\circ C} CdO+Na_2CO_3+1/2O_2$$
 -121.27 кДж (2)

система CdCO₃:Na₂O₂ Установлено. что при соотношении компонентов, равном 1:1, способна взаимодействовать в режиме СРВ. Однако тепловыделение относительно невелико по сравнению с другими ранее изученными пероксидно-солевыми системами ($T_{\rm au}$ в системе CdCO₃-NaO₂ составляет 722 К, в то время как, например, для Cu_2Cl_2 – NaO_2 1554 К [3]). Поэтому протекание взаимодействия карбоната кадмия с пероксидом натрия в режиме СРВ весьма чувствительно к ряду факторов (геометрические размеры образца, температура окружающей среды и т.д.), что при их изменении может привести к срыву фронта горения. Оценочное скорости перемещения фронта горения в системе CdCO₃:Na₂O₂ при мольном соотношении компонентов 1:1 составляет 26±5 мм/мин.

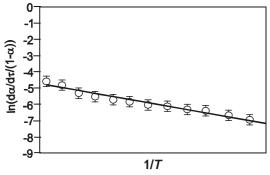
Для схемы взаимодействия $CdCO_3$ с Na_2O_2 были разработаны математические модели процесса, описывающие скорость распространения фронта CPB и поведение системы в условиях ДТА. Использование моделей совместно с экспериментальными данными скорости CPB и данных ДТА по методике [6] позволило определить кинетические параметры процесса взаимодействия между $CdCO_3$ и Na_2O_2 :

$$\frac{\mathrm{d}\alpha}{\mathrm{d}\tau} = \frac{13}{d} \cdot \exp(-\frac{7000}{T}) \cdot \alpha^{2/3} (1 - \alpha)^{1/3}$$

где d — диаметр частиц карбоната кадмия; α — степень превращения $CdCO_3$

Рис. 2. Кривые распределения компонентов в зависимости от температуры во фронте СРВ для системы $CdCO_3:Na_2O_2=1:1.$ 1 — сумма продуктов реакции; 2 — Na_2O_2 ; 3 — $CdCO_3$; 4 — Na_2CO_3 ; 5 — O_2 ;6 — Na_2O_2 ; 7 — CdO

Одним из результатов расчета являются кривые распределения компонентов зависимости температуры во фронте СРВ. Из расчетной структуры фронта для системы CdCO₃ – Na_2O_2 (рис.2) следует, что в отличие температуры otначала реакции, температура, достигаемая во фронте, достаточна для разложения карбоната в зоне прогрева.


Как следует из кривых

распределения, начинается процесс как обменная реакция (2), но

вследствие разогрева системы во фронте может протекать параллельный процесс разложения карбоната кадмия согласно уравнению (1). Выделяющийся CO_2 способен реагировать с остающимся непрореагировавшим пероксидом натрия:

$$CO_2 + Na_2O_2 \longrightarrow Na_2CO_3 + \frac{1}{2}O_2$$
 (3)

Поскольку во фронте реакции возможно протекание двух параллельных процессов с участием CdCO₃, было изучено его разложение в неизотермических условиях ДТА. Для определения вида кинетической функции $f(\alpha)$ и оценки значений E/R и $\ln k_0$ были использованы данные ТГ и ДТА, исходя из которых определяли степень превращения и температуру. Значения производной степени превращения ПО времени определялись путем численного дифференцирования ТГ-кривой. Линеаризация ТГ-кривой $\ln(d\alpha/d\tau/f(\alpha))-1/T$ (рис. координатах 3) позволяет эффективные значения энергии активации и предэкспоненты, которые составили соответственно $E/R = 11350 \text{ K}, k_0 = 5,12 \cdot 10^4 \text{ c}^{-1} (r = 0.963).$

Рис. 3. Анаморфоза кривой ТГ разложения карбоната кадмия

Полученные данные позволили произвести расчет структуры фронта СРВ с учетом реакции (1). Расчет проведен, исходя из предположения, что исходное вещество CdCO₃ может реагировать c Na_2O_2 как (твердофазная обменная реакция, $E_2/R = 7000$ K; $k_{o2} = 13$ м/с), так и разлагаться (реакция разложения, $E/R = 11350 \text{ K}, k_0 = 5,12 \cdot 10^4 \text{ c}^{-1}$.

Кривые распределения оказались эквивалентными кривым на рис. 2. и по этой причине не приведены. Результаты расчета с учетом кинетических параметров двух процессов показали, что карбонат кадмия преимущественно реагирует в соответствии с реакцией (2) (99,83%), а реакция (1) его разложения практически не идет (0,17%). Расчетное количество CO_2 составляет 10^{-3} массовых долей продуктов реакции, что соответствует 0.75% об. газообразных продуктов. Экспериментально также фиксируется незначительное количество CO_2 в газообразных продуктах реакции ($\sim 0.15\%$ об). Разница значений связана с протеканием реакции (3) между выделяющимся CO_2 и пероксидом натрия.

Таким образом, установлено, что взаимодействие в системе $CdCO_3$ – Na_2O_2 протекает и возможно его реализация в режиме CPB. Начало реакции не связано с разложением карбоната кадмия.

Взаимодействие начинается в области тех же температур что и для большинства изученных ранее пероксидно-солевых систем и связано с изменениями, которые при этих температурах происходят с пероксидными соединениями натрия. В то же время во фронте реакции развиваются температуры, превышающие температуру разложения карбоната. Однако вследствие кинетических причин, во фронте СРВ разложение CdCO₃ практически не реализуется, и процесс определяется более быстрым обменным взаимодействием между катионами кадмия и натрия.

Литература

- 1. Шаповалов В.В. Самораспространяющееся взаимодействие перхлората магния с пероксидными соединениями натрия // Укр. хим. журнал, 2000. Т. 66. № 6. С. 96–101.
- 2. Шаповалов В.В., Гороховский А.Н. Закономерности самораспространяющегося взаимодействия сульфатов металлов с пероксидными соединениями натрия // Укр. хим. журнал, 2001. Т. 67. № 2. С. 85–88.
- 3. Мнускина Ю.В., Шаповалов В.В., Шибико М.М. Взаимодействие хлорида меди(I) с супероксидом натрия // Наукові праці ДонНТУ. Серія: Хімія і хімічна технологія, 2005. Вип. 95. С. 36–41.
- 4. Вольнов И.И. Перекисные соединения щелочных металлов.— М.: Наука, 1980. 160 с.
- 5. Краткий справочник физико-химических величин. / Под ред. А.А. Равделя и А.М.Пономаревой. Л.: Химия, 1983. 232 с.
- 6. Шаповалов В.В. Определение кинетических параметров интенсивных экзотермических твердофазных реакций // Укр. хим. журнал, 2000. Т. 66. № 7. С.31–36.

30.04.08