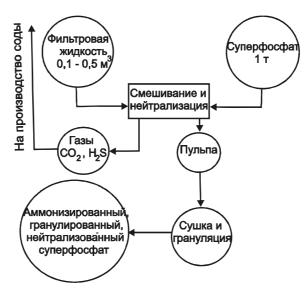
УДК 661.632 + 66.094.1 + 661.33 ПОЛУЧЕНИЕ ГРАНУЛИРОВАННОГО АММОНИЗИРОВАННОГО СУПЕРФОСФАТА

Посторонко А.И.


Украинская инженерно-педагогическая академия

Предложена технология получения гранулированного аммонизированного суперфосфата с использованием фильтровой жидкости содового производства, которая является отходом. Показано, что полученный продукт удовлетворяет требованиям, предъявляемым к гранулированным удобрениям. При оптимальных условиях процесса общая сумма питательных веществ составляет 22%.

суперфосфат Известно, простой ЧТО является удобрением с рН 2,0-2,5, поэтому на качество гранулированных суперфосфатов оказывает влияние содержание свободной фосфорной кислоты в продукте. В преобладающем большинстве случаев нейтрализацию кислого суперфосфата осуществляют мелом или известняком [1-3]. Предложен способ получения суперфосфата сточными водами, содержащими сульфат аммония [4]. Описана нейтрализации свободной H_3PO_4 суперфосфата использованием отходов содового производств [5], однако в работе не описано влияние фильтровой жидкости на состав, физико-химические и механические свойства гранулированного аммонизированного суперфосфата, поэтому в настоящей работе освещены результаты этих исследований.

Опыты проводили следующим образом. Навеску суперфосфата (100–200 г) помещали в лабораторный гранулятор и при окатывании увлажняли фильтровой жидкостью. Количество добавки использовали при различных соотношениях суперфосфат: фильтровая жидкость. Время окатывания составляло 10 мин. По окончании гранулирования суперфосфат высушивали в термостате при температуре 90–100°С в течение 1,0–1,5 ч. Готовый продукт анализировали на содержание всех видов фосфора, азота и влаги, определяли выход товарной фракции и механическую прочность гранул. Фильтровая жидкость содовых заводов представляет водный раствор карбонатов и бикарбонатов аммония и натрия, который имеет щелочную реакцию и является хорошим нейтрализующим веществом. Кроме того, азот из фильтровой жидкости переходит в суперфосфат с образованием двойного азотно-фосфорного удобрения. Технологическая схема процесса представлена на рис.1.

Полученные результаты исследований представлены в табл. 1. Как видно из данных таблицы, при внесении небольшого количества добавки фильтровой жидкости нейтрализация свободной H_3PO_4 до требуемого уровня не происходит, поэтому нужно использовать дополнительно карбонатсодержащий материал — известняк (40–80% от стехиометрии).

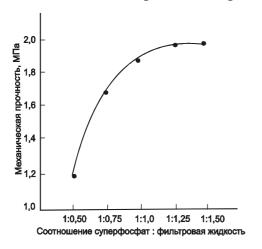

Рис. 1. Принципиальная технологическая схема переработки фильтровой жидкости содовых заводов в двойное азотно-фосфорное удобрение

Таблица 1. Физико-химические показатели гранулированного аммонизированного суперфосфата, полученного нейтрализацией свободной H₃PO₄ фильтровой жидкостью

MIGROOTING						
Соотношение	Содержание в продукте, % (масс.)					
суперфосфат:						Степень
фильтровая	P_2O_5 yes.	P_2O_5 вод.	P ₂ O _{5 своб.}	N	влаги	разложения, %
жидкость						
1:0,25	20,41	18,45	6,05	-	3,83	93,77
1:0,5	20,40	18,38	4,82	0,36	3,46	94,00
1:0,75	20,36	17,90	3,53	0,59	3,15	94,65
1:1	20,30	17,37	2,84	1,15	2,48	95,28
1:1,25	20,27	16,54	1,97	1,32	2,50	95,95
1:1,5	19,80	16,00	0,50	1,79	2,63	96,39
1:1,75	19,62	15,20	0,40	2,16	2,98	96,07
1:2,0	19,50	14,60	0,40	2,40	3,08	92,34

При увеличении добавления в суперфосфат больших количеств фильтровой жидкости обеспечивается заданный уровень нейтрализации, и необходимость применения известняка исключается. В этом случае полученный продукт содержит 1,15-2,40% N, что достаточно для аммонизированного суперфосфата. Удобрение обладает хорошими физико-механическими свойствами без снижения содержания усвояемой формы P_2O_5 . Увеличение количества фильтровой жидкости приводит к незначительной ретроградации усвояемой формы P_2O_5 . Так,

при отношении суперфосфат : фильтровая жидкость 1:1 аммонизация протекает без ретроградации усвояемого фосфора. Дальнейшее повышение нормы количества фильтровой жидкости приводит к постепенному снижению содержания усвояемого фосфора, и водорастворимая форма P_2O_5 резко переходит в цитратнорастворимую. При оптимальном режиме процесс гранулообразования протекает

Puc.2. Влияние количества добавки фильтровой жидкости на механическую прочность гранул

стабильно, создаются благоприятные условия для образования гранул, что способствует улучшению физико-механических свойств продукта.

Как видно из рис. 2, с увеличением количества добавки фильтровой жидкости прочность гранул повышается. Это объясняется тем, что в процессе образования зародышей и формирования гранул фильтровая жидкость,

выполняя функцию дополнительного связывающего материала, покрывает тонкой оболочкой поверхность гранул и придает им механическую прочность. Дело в том, что при гранулировании фильтровая жидкость заполняет поры между частицами суперфосфата; образующиеся гранулы, формируясь из мелких фракций, становятся более плотными, гранулометрический состав продукта улучшается.

Полученный по данной технологии гранулированный аммонизированный суперфосфат обладает хорошими физико-химическими свойствами (рис. 2),при оптимальных условиях ведения процесса ретроградация усвояемого фосфорного ангидрида не происходит, механическая прочность гранул достигает 2 МПа, выход товарной фракции составляет 80%.

Литература

- 1. Позин М.Е. Технология минеральных солей. Л.: Химия, 1974. 792 с.
- 2. Позин М.Е. Технология минеральных удобрений. Л.: Химия, 1989. 352 с.
- 3. Кочетков В.Н. Фосфорсодержащие удобрения. Справочник. М.: Химия, 1982. 400 с.
- 4. Самедов М.М., Алосманов М.С., Кармышов В.Ф. и др. Получение гранулированного азотированного суперфосфата // Химическая промышленность, 1989. № 6. С. 429–430.
- 5. Меженный Я.Ф., Посторонко А.И. Использование фильтровой жидкости для нейтрализации кислотности простого суперфосфата // Укр. хим. журнал, 1967. Том XXXIII. С. 769–772.

30.04.08