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Abstract 

M. Krasnyk, K. Bondareva, O. Milokhov, K. Teplinskiy, M. Ginkel, A. 
Kienle, The ProMoT/Diana Simulation Environment. This article introduces the 
object-oriented modeling tool ProMoT and the simulation environment Diana 
suitable for numerical analysis of problems in chemical engineering and systems 
biology. The key aspects of this environment are flexible structured models, an 
efficient modular numerical kernel, and the use of the scripting language Python as 
a powerful command line interface. The implementation is based on CAPE-OPEN 
interfaces to allow a modular software design and easy extensions of the system. 
The contribution discusses the design and implementation rationale of the 
simulation environment. 

Motivation 
 

With the increasing capabilities of modern computers, it appears possible 
in academia and industry to describe and analyze more complex problems with 
higher resolutions. To make this possible a good and ”easy to use” modeling 
tool is required, that allows to create sophisticated models and analyze them 
with robust and efficient simulation code. Usually engineers have the choice 
between well known commercial simulation environments, like VisSim, 
Simulink, DyMoLa, gPROMS, etc. These software packages are well 
established with considerable libraries in different engineering fields and have 
own communities. There are also efforts to develop standards for the exchange 
of models like Modelica or the Systems Biology Markup Language. We want to 
contribute our modeling and simulation environment ProMoT/Diana (the names 
stand for ”Process Modeling Tool” and ”Dynamic sImulation And Nonlinear 
Analysis” tool). 

The special characteristics of ProMoT and Diana are, that they build on 
open source, freely available numerical code, provide sophisticated modeling 
and simulation capabilities for large models found in process engineering and 
systems biology, allow to be connected with other tools by common interfaces, 
allow to be easily extended for new requirements arising in academic research 



and will be freely available for academic groups. The following sections will 
discuss the general design of ProMoT and some aspects of the software design 
of Diana along with a short application example. 

Modeling with ProMoT 

Model setup 
 

ProMoT is a general modeling tool for the object-oriented development 
of dynamic equation-based models. Its main fields of application are process 
engineering and systems biology. ProMoT does not contain a simulation system 
itself but it has been originally developed as modeling front-end for the 
simulation environment DIVA [1]. The model description used inside the tool is 
generic and in essence boils down to a tree of objects containing a symbolic 
system of ordinary differential and algebraic equations which describe 
continuous behavior. The models can also contain descriptions of discrete 
behavior that interact with the continuous equation set. The discrete part is 
described using the formalism of a deterministic, boolean valued Petri net. This 
formalism has been chosen for several reasons: i) places and transitions can be 
easily connected to the continuous model as boolean variables or discrete events 
respectively; ii) Petri networks are easy to modularize, allowing for 
encapsulated descriptions of local discrete processes; iii) local discrete parts can 
act asynchronously but can also be connected to describe the synchronization of 
events. 

These characteristics render Petri networks as a good tool to describe 
discrete model changes based on physical phenomena as well as programmed 
controllers for process engineering models [2]. 

The model description inside ProMoT is quite general and is not limited 
to work with one specific simulation framework. Therefore the models can be 
exported for different simulation environments like Matlab, Diva and last but not 
least for our new simulation environment Diana. 

Models in ProMoT can be setup using the modeling language MDL or 
by aggregation and connection of existing modules in a graphical editor. For 
more information about this topic see [3, 4]. The structuring follows the multi-
level framework of network-theory, which is more extensively described in 
[2,5]. Based on this framework, several modeling libraries have been 
implemented for different application fields like e.g. reaction and separation 
systems with vapour-liquid equilibrium [4], membrane reactors, fuel cells and 
models in systems biology [3]. 

When the user has finished the work on the model, the modeling tool 
allows performing different static tests of the dependency structure of the 
equation set to detect modeling errors and helps to debug the model. 
Furthermore the equation structure allows optimizing the equation set for 



efficient simulation; this is further elaborated in [2]. The derived equation 
structure is also exported to most of the simulation environments as equation 
pattern to allow efficient calculations using numeric algorithms and sparse 
matrix techniques. 
 

Code generation design 
 

Code generation starts with an instantiated and optimized model. Since 
there are different output formats with own characteristics, the code generation is 
not implemented in methods of the model but in separate classes that interact 
with the model in a protocol similar to the strategy design pattern [6]. In this 
way it becomes easier to maintain multiple output formats without continuously 
changing all model classes. 

In the case of code-generation for Diana, the original structure of the 
model is not exported, because the simulator only supports equation sets with 
fixed structure and structured computation would be less efficient for large scale 
models. 

The generated code implements a subclass of the generic abstract model 
class of Diana. The generic class realizes most functionalities and interfaces for 
memory allocation, variable access, computation of approximate Jacobian 
matrices by finite differences and generic methods to evaluate the state and 
transitions of the Petri network. 

The specific model class must realize the specific initialization of the 
model, the calculation of intermediate variables and residuals. It can also 
implement some optional functions. If the model has a discrete part it will 
implement a specifically structured Petri network and the respective trigger 
functions. If there are a specific requirements on accuracy, e.g. if sensitivity 
analysis or continuations are desired, the model can implement methods for 
analytic calculation of Jacobians. 

Analytic Jacobians are derived using the symbolic differentiation 
algorithm implemented in the computer algebra system Maxima. We have 
implemented some special functions to generate optimized code for Jacobian 
matrices calculation of iterative equations and for derivatives of higher order. 

 
 

Numerical analysis with Diana 
 
General design rationale 
 
The generic interfaces for solvers and models in Diana are based on the 

specifications developed by the CAPE-OPEN community [7]. These interfaces 
are designed to be used across an inter-process communication interface and 



they allow exchanging specific models and numeric algorithms without difficult 
changes of the sources. We use these interfaces wrapped into the Python 
scripting language as a command line user interface. 

The creation of model and solver instances is in general performed in a 
factory design pattern, where the class for the object is identified by name. This 
abstraction is useful, because it will allow to get the instances in different ways: 
i) as a direct python instance ii) as an instance created from a dynamically 
loaded C++ shared library or iii) as an remote instance published by an external 
CAPE enabled simulation package. Currently we work with shared libraries. 

 
Dynamic simulation 
 
Dynamic simulation in the Diana environment is performed by a set of 

numerical differential algebraic solvers. All solvers implement the 
ICapeNumericDAESolver interface. This allows to use the solver instance as a 
”black-box” integrator in Python scripts. The setup of the solver can be changed 
by a set of parameters: e.g. the relative error tolerance, the type of the internal 
linear algebra solver, etc. This parameter concept is derived from CAPE-OPEN; 
parameters have a name and a value, contain also a specification with default 
value and a documentation text, which makes them self-explanatory. In the same 
manner adjustments to models take place. 

Solvers accept different reporting interfaces to process results of 
simulation directly. This allows to generate simulation logs or plots of 
simulation results. In Diana different integration codes have been used, like 
BDF or Runge-Kutta, this allows to solve different problem types, like systems 
of stiff ordinary or differential algebraic equations. 
 

Parameter continuation 
 

A continuation superclass has been developed for the Diana nonlinear 
analysis suite that allows to perform a numerical continuation of the solution for 
a specified subtask. The superclass realizes a predictor-corrector method with 
tangent or chord predictor and local or pseudo-arclength parameterization of the 
corrector. A Newton method with line search algorithm has been used as the 
corrector method. Continuation subclasses define the specific problem 
description by specifying residual vector and Jacobi matrix. Parameter 
continuation is used for the calculation of steady state solution branches and 
critical boundaries in the parameter space. During continuation the user has the 
possibility to determine the stability of the steady state. Stability analysis is 
applied to linearized model near steady state and based on the generalized 
eigenvalue problem. Such kind of analysis allows to detect events where real 
eigenvalue or pairs of the complex conjugate eigenvalues cross the imaginary 



axis. 
Two additional continuation subclasses are used to find solution curves 

with conditions specified by an augmented system. The first augmented system 
is used for tracking Hopf points with pure imaginary eigenvalues. The second 
one is used for singularities with zero real eigenvalue. If the model has been 
generated with support for the calculation of higher order derivatives, it is 
possible to add supplementary conditional equations to find more complex 
singularities of the steady state continuation curve. Conditions for limit points, 
isola points, pitchfork bifurcation points, and winged cusp points have been 
implemented. More information about methods and applications of the 
singularity analysis can be found in [8]. 
 

Optimization 
 

Numerical optimization is used to solve a variety of problems in process 
engineering and systems biology. There are currently running projects in our 
working team that involve model identification and system reengineering, 
experimental design and optimal control of engineering processes. These 
problems or optimization tasks mostly use some model of a physical or 
chemical process, but involve additional specific calculations of objective 
functions and constraints that cannot be carried out directly within the 
simulation of the model. Our main goal is to provide a kind of glue software 
with common interfaces that allows integrating different problem specifications 
with the different algorithms. The user should be required to program as little as 
possible, but must be able to customize the calculations for his specific 
optimization task. 

In order to integrate algorithms which can solve different optimization 
tasks we propose a software architecture, where the optimization task is 
abstracted to a common interface separate from the algorithm. This interface 
allows to access optimization variables, to compute the objective function and 
optional inequality and equality constraints. Optionally also sensitivity matrices 
can be calculated by the task, but this is only required, if gradient based 
algorithms should be applied. Different algorithms can be applied to this 
abstracted interface, and the implementation effort integrate a new algorithm is 
reduced to a minimum since all model and problem specific calculations are in 
the responsibility of the optimization task. 

There are different preimplemented concrete optimization tasks, which 
implement the abovementioned interface. On the one hand there are fully 
preimplemented tasks, e.g., parameter fitting, where simulated time courses of a 
model are adjusted to measurements from different experiments. In this case the 
user only configures the optimization task by supplying the model, the 
measured values and specific parameter sets. On the other hand there is the 



possibility to implement completely custom objective functions and constraints 
for an optimization with Python functions. In this way the optimization is highly 
flexible and the user is able to adjust the calculations very easily. Currently there 
are a deterministic multiple shooting algorithm and a genetic algorithm 
implemented [9]. 
 

Application example 
 

The application is considered the dynamic simulation of a counter-
current fixed-bed reactor with self-sustained oscillations. The model is 
represented by a system of discretized parabolic partial differential and algebraic 
equations. For details with a full model description and discussions of the results 
see [10]. 

The ProMoT compiler mdl2diana generates C++ source files for the 
model and uses an external compiler to produce a shared library with the model 
code. The following Python script realizes a simple dynamic simulation of the 
reactor model: 
 
The ProMoT/Diana Simulation Environment  

import diana, sys 
main=diana.GetDianaMain(sys.argv); 
mmanger=main.GetModelManager(); 
model=mmanger.CreateModel(diana.CAPE_CONTINUOUS, "GzfbrIdwt.so"); 
model.Initialize(); 
eso=model.GetActiveESO(); 
epar=eso.GetParameters(); evar=eso.GetStateVariables(); 

ri=main.CreateReportingInterface("basic"); 
ri.SetComponentName("data"); 
print "increase inlet temperatures of both tubes"; 
epar["t1_ein"].SetValue(600.0); epar["t2_ein"].SetValue(600.0); 
print "adjust inlet concentrations"; 
epar["xa1_ein"].SetValue(0.003); epar["xa2_ein"].SetValue(0.003); 

# create solver 
sfactory=main.GetSolverFactory(); 
solver=sfactory.CreateSolver(diana.CAPE_DAE, model, "ida.so"); 
solver.Initialize(); 
solpar=solver.GetParameters(); 
solver.SetReportingInterface(ri); 
ri.Add(solpar["T"]); 
for i in xrange(epar["n_z"].GetValue()): 
 ri.Add(evar.ItemByName("t1[%d]"%(i+1))); 



solpar["Tout"].SetValue(100); solpar["Tend"].SetValue(1000) 
solver.Solve(); 

print "reduce inlet temperature in order to get oscillations" 
epar["t1_ein"].SetValue(300.0); epar["t2_ein"].SetValue(300.0); 
solpar["Tend"].SetValue(6000); 
solver.Solve(); 
ri.WriteData("oscil.dat"); 
 

The evolution of the temperature profile in the reactor is shown in figure 1. 
 

 
 
Figure 1. Results of dynamic simulation of the counter-current fixed bed reactor 

 

Conclusion and future plans 
 
ProMoT/Diana is an open-source and extensible modeling and 

simulation environment for process engineering and systems biology. It allows 
for object-oriented modeling, model exchange and provides an extensible 
architecture for numeric model analysis. By the use of Python it allows flexible 
extensions for users that are not experienced programmers. In the future it is 
planned to extend the set of available numerical algorithms. Also a network 
layer will be developed based on CAPE-OPEN that allows to connect Diana 
with other simulation packages via a CORBA middleware. 
 



References 
 
1. K. D. Mohl, A. Spieker, R. Köhler, E. D. Gilles, and M. Zeitz. DIVA - A 

simulation environment for chemical engineering applications. In ICCS 
Collect. Vol. Sci. Pap., pp. 8–15. Donetsk State Techn. University, Ukraine, 
1997. 

2. M. Mangold, O. Angeles-Palacios, M. Ginkel, R. Waschler, A. Kienle, and 
E.D. Gilles. Computer aided modeling of chemical and biological systems - 
methods, tools, and applications. Industrial & Engineering Chemistry 
Research, 44(8):2579–2591, 2005.  

3. M. Ginkel, A. Kremling, T. Nutsch, R. Rehner, and E.D. Gilles. Modular 
modeling of cellular systems with ProMoT/DIVA. Bioinformatics, 19:1169–
1176, 2003 

4. R. Waschler, O. Angeles-Palacios, M. Ginkel, and A. Kienle. Object-oriented 
modeling of largescale chemical engineering processes with ProMoT. 
Mathematical and Computer Modeling of Dynamical Systems, 2005.  

5. E.D. Gilles. Network theory for chemical processes. Chem. Engng. 
Technology, 21:121–132, 1998. 

6. E. Gamma, R. Helm, R. Johnson, and John Vlissides. Design Patterns: 
Elements Reusable Object-Oriented Software. Addison Wesley, 1995.  

7. M. Jarke, J. Koeller, W. Marquardt, L. von Wedel, and B. Braunschweig. 
CAPE-OPEN: Experiences from a standardization effort in chemical 
industries. Technical report, Lehrstuhl frü Prozesstechnik, RWTH Aachen, 
1999. 

8. M. Krasnyk, M. Ginkel, M. Mangold, and A. Kienle. Numerical analysis of 
higherorder singularities in complex process models in ProMoT. In 
PLu.igjaner and A. Espuña, editors, European Symposium on Computer 
Aided Process Enginienegr - ESCAPE-15, pp. 223–228. Elsevier, 2005. 

9. K. Teplinskiy, V. Trubarov, and V. Svjatnyj. Optimization problems in the 
technological-oriented parallel simulation environment. pp. 582–587, 
Erlangen, 2005. SCS Publishing. 

10. M. Mangold, F. Klose, E.D. Gilles. Dynamic behavior of a counter-current 
fixedbed reactor with sustained oscillations. In S. Pierucci, editor, European 
Symposium on Computer Aided Process Engineering - ESCAPE-10, pp. 
205–210. Elsevier, 2000. 

 
Дата надходження до редакції 03.10.2007 р. 

 


	Motivation
	Modeling with ProMoT
	Model setup
	Code generation design
	Numerical analysis with Diana
	General design rationale
	Parameter continuation
	Optimization
	Application example
	Conclusion and future plans
	References

