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13 Evolutionary test generation methods for 
digital devices 
 

In this chapter, we will discuss how evolutionary methods can be used for test 
generation of digital circuits. In present time it is strongly investigated the new di-
rection in theory and practice of artificial intelligence and information systems – 
evolutionary computations. This term is used to generic description of the search, 
optimizing or learning algorithms, based on some formal principles of natural evo-
lutional selection, which are sufficiently applied in solving various problems of 
machine learning, data mining, databases etc [1]. Among this approaches follow-
ing main paradigms can be picked out: genetic algorithms (GA), evolutionary 
strategy (ES), evolutional programming (EP), genetic programming (GP). 

The differences of these approaches mainly consist in the way of target solution 
representation and in different set of evolutional operators used in evolutional si-
mulation. Classical GA uses the binary encoding of problem solution and basic 
genetic operators are crossover and mutation. In ES solution is represented by real 
numbers vector and basic operator is mutation. EP uses FSM as solution represen-
tation and mutation operator. In GP problem solution is represented by program, 
crossover and mutation operators are applied. Now this classification is enough 
relative and interaction of basic evolutionary paradigms each other takes place.  

13.1 Genetic algorithms and their modifications  

GA are random directed search algorithms, which emulate natural evolution 
process, to construct (sub)optimal solution of given problem. Any solution is 
represented with a chromosome or individual – string of elements (genes). Clas-
sical "simple" GA [2] uses binary strings (for example, 0011101) to represent an 
individual. Therefore it looks very attractive to use GA techniques for a decision 
of ATPG problems for DS at structural or functional description levels. On the so-
lution set the fitness (goal) function is determined. Fitness function allows to eva-
luate the closeness of each individual to the optimal solution – the ability of sur-
vival. Classical “simple” GA uses three basic operators: reproduction, crossover 
and mutation. Using these operators, the population (the set of individuals-
solutions of considered problem) evolves from one generation to another. Classic-
al steady state  GA may be represented as the following sequence of operations 
that is shown in flow chart of Fig.13.1. Here parent individuals are selected with 
best fitness values. Then crossover is performed with a high probability Pc. The 
formed offspring are mutated  with a low probability Pm and inserted in current 
population. To maintain the steady individuals number the population reducing is 
performed.    
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Initial population generation 

Parents selection for recombination

Creating offspring of selected pairs 
of parents – crossover operator 

Mutation of created individuals – 
mutation operator 

Insertion of new individuals to the 
current population  

Reducing a number of individuals 
to given number in new population 

- reinsertion 

Search of the best individual in 
final population 

Checking criterion. 
Finish (Yes/No)? 

Fitness function evaluation 

Fig.13.1 Classical “simple” GA flowchart 

At present there were suggested numerous modifications and generalizations of 
GA: 1) new variants of each GA step implementations (Fig.13.1); 2) essential 
modification of algorithm structure[3]. Here we can mark up different methods of 
parent selection, population reduction. Different genetic operators of crossover, of 
mutation. Further we shall briefly consider different variants of every GA step im-
plementation and generalization of GA.  

13.1.1 Parents selection 

At this step the individuals producing offspring are selected. The first step is 
fitness assignment. Each individual in the selection pool receives a reproduction 
probability depending on the own objective value and the objective value of all 
other individuals in the selection pool. This fitness is used for the actual selection 
step afterwards. 

In selection the individuals producing offspring are chosen. As the result of se-
lection intermediate population tP~  from current population tP  (t – generation 
number) is generated: tt PP ~

→ . Selection operator is based on fitness function 
values. Various selection methods is used fitness value information differently and 
significantly influences on GA effectiveness. Each individual t

ia  in the selection 
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pool receives a reproduction probability )( t
is aP  depending on the own fitness 

value and the fitness value of all other individuals in the population. And selection 
of individual t

ia  from current population tP  to intermediate population tP~  is ex-

ecuted basing on the probability )( t
is aP . The calculation methods of the probabili-

ty )( t
is aP  determines different selection methods: 

roulette wheel selection [3] 
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where )( t
iaf  - fitness function value, N – population size; 

linear rank-based selection [BH91] , [3] 
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where 21 ≤≤α  is chosen randomly, αβ −= 2 . 
On tournament selection [3] m individuals are chosen randomly, then the best 

of them is selected as parents. This procedure is continued until intermediate pop-
ulation tP~  is not formed. Here selection parameter is Nm ≤≤2 . 

13.1.2 Crossover operators 

Once the parents are selected, the crossover operator is used to generate 
offspring with a high probability Pc. The basic genetic operators and their proper-
ties can now be explained. In single-point crossover one crossover position 

}1,...,2,1{ −∈ Lk , L – length of an individual, is selected uniformly at random and 
the substrings exchanged between the individuals about this point, then two new 
offspring are produced (Fig.13.2). 

 
A: 0 1 1 1 0 1 0 1 0 
B: 1 0 0 1 1 0 1 0 1 
  

A’: 0 1 1 1 0 0 1 0 1 
B’: 1 0 0 1 1 1 0 1 0 

Fig.13.2 Single-point binary crossover 
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A: 0 1 1 1 0 0 1 1 0 1 0 
B: 1 0 1 0 1 1 0 0 1 0 1 
            
A’: 0 1 1 0 1 1 1 1 0 1 1 
B’: 1 0 1 1 0 0 0 0 1 0 0 

Fig.13.3 Multi-point binary crossover 

For multi-point crossover, m crossover positions }1,...,2,1{ −∈ Lki , mi ,1= , 
are chosen at random with no duplicates and sorted in ascending order. Then, the 
substrings between successive crossover points are exchanged between the two 
parents to produce two new offspring (Fig.13.3). The section between the first va-
riable and the first crossover point is not exchanged between individuals [2,3].  

 
Binary mask 1 0 0 1 0 1 1 1 0 0 

First parent 1 0 1 0 0 0 1 1 1 0 

           

Offspring 1 1 0 0 0 0 1 1 1 1 

           

Second parent 0 1 0 1 0 1 0 0 1 1 

Fig.13.4 Uniform crossover 

Uniform crossover [2,3] makes every locus a potential crossover point. A cros-
sover mask, the same length as the individual structure is created at random and 
the parity of the bits in the mask indicate which parent will supply the offspring 
with which bits (for example, 1 – first parent, 0 –second parent – Fig.13.4).  

13.1.3 Mutation 

0 1 1 1 0 0 1 1 0 1 0 
           

0 1 1 0 0 0 1 1 0 1 0 

Fig.13.5 Binary mutation 

As new offspring are generated, each gene is mutated with low probability mP .  
Usually the probability of mutating a gene is set to be inversely proportional to the 
number of genes in chromosome (dimensions). The more dimensions one individ-
ual has as smaller is the mutation probability.  
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For binary individuals mutation means flipping of variable values. For every 
individual the variable value to change is chosen uniform at random with low 
probability ]01,0;001,0[∈mP  (Fig.13.5).  

In some cases inversion mutation operator is used. Two bits are chosen in indi-
vidual at random and then chosen bits are exchanged (Fig.13.6).  

 
0 1 1 1 0 0 1 1 0 1 0 
         

0 1 1 0 1 0 0 1 0 1 0 

Fig.13.6 Inversion mutation 

Note that mutation serves the crucial role for providing the gene values that 
were not present in the current population. It enables new individual properties 
acquisition. Thus mutation makes the entire search space reachable, despite popu-
lation finiteness. In spite of the fact that crossover has the most efficient search 
mechanism, it does not guarantee the reachability for each   point of search space.  

So for solving any problem with genetic algorithm we must first of all define: 
individual and population, genetic operators, fitness function. 

In ATPG problem solutions are represented as binary patterns or sequences of 
patterns also. Therefore it looks very attractive to use GA techniques for a deci-
sion of ATPG problems for DS at structural or functional description levels [2,3]. 
Further we will use different variants implementation and generalization of Gas  
for test generation problem of digital circuits.  

13.2 Genetic test generation algorithm for digital circuits 

The objective of digital circuits testing is to generate compact sequence of bi-
nary test vectors that has high coverage of manufacturing defects. The test se-
quence applied should be able to uncover all possible defects that could occur in 
manufacturing process. That is, the output response of defective chip (or board)  
should be different from the outputs of a good chip.  At the same  time real physi-
cal defects are modeled with faults, such as stuck at fault, short, bridge fault, tran-
sistor stuck  open, transistor stuck  close and so on.  Mostly stuck at fault model-
ing is used in digital testing. Here nodes are assumed to be stuck at  constant either 
‘0’ or ‘1’ for the purpose fault modeling. So each node may have two types of this 
fault –   s-a-0 and s-a-1. The approach usually used is to try to generate a test se-
quence that detects all single stuck-at faults in circuit under test. We would like to 
ensure, that  generated test sequence contains a test for each single stuck-at fault in 
circuit under test. After a high fault coverage for single stuck-at faults is achieved, 
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the additional test sequences may be generated that target other fault models, such 
as  transistor stuck, delay  fault model so on. 

Generally the test generation process consists of two phases. At the first phase 
there are used the methods that do not direct to specific single fault but take the all 
class of single stuck-at faults   in circuit under test. Here test sequence is generated 
for faults that are checked enough easily with using not great computer power. Be-
fore the pseudorandom  methods were used at this phase but now also genetic al-
gorithms are exploited. Then   the fault simulation determines the fault coverage 
and unchecked fault list for which it is necessary to generate   test sequences. 

 So at second phase for each unchecked fault test sequence is generated with 
using  deterministic (or genetic)  algorithm. Then again the fault simulation is used 
for reducing unchecked fault list.  This process cycles until the high fault coverage 
is reached.  We will discuss the genetic algorithm using basically at the second 
phase of test generation. Where test sequence is generated for specific unchecked 
fault. 

13.2.1 Test generation genetic algorithms for combinational 
circuits 

At first the genetic algorithms were used for test generation of combinational 
circuits where output signals depend on only input signals and do not depend on 
state variables   are usually represented with flip-flops. Here as a rule the individ-
ual corresponds to single binary test vector X=(x1,x2,…, xn). The test generation 
problem may be formulated  analytically for given single fault in one output com-
binational circuit[4]. Let f(X) is a Boolean function implemented with good com-
binational circuit and φ(X) - Boolean function implemented with fault circuit. 
Then Boolean expression D(X)=f(X)⊕φ(X) is called  difference function. It is ob-
vious that D(X)=f(X)⊕φ(X)=1 defines the  values of test vector X. So test genera-
tion problem is reduced to a solution search of Boolean equation  D(X) =1. In the 
case multi outputs  combinational circuit    the difference function may be genera-
lized  in the following way: 

))()((...))()(())()(()( 2211 XXfXXfXXfXD mm ϕ⊕∨∨ϕ⊕∨ϕ⊕=   
Also it is obvious that a solution  of Boolean equation  D(X) =1 gives the test 

vector for given fault.  
This problem may be efficiently solved with using genetic algorithm. In this 

case the individual represents the binary test vector X=(x1,x2,…, xn,) where xi=0,1 
and n equals  circuit inputs number. So the population is composed of binary test 
vectors and standard genetic operators of crossover and mutation may be used in 
this case.  Usually the number individuals in population is proportional to inputs 
number n (for example 3n)[5]. We will consider the genetic algorithm using for 
test generation for example of circuit fig.13.7. 
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Fig.13.7 Combinational circuit  

 
For the convenience there are represented in table13.1 all signal values for any 

inputs vectors. 
 

Table 13.1. 

X1 X2 X3 X4 X5 X6 
0 0 0 1 1 1 
0 0 1 1 1 1 
0 1 0 1 1 1 
0 1 1 1 0 0 
1 0 0 1 1 1 
1 0 1 1 0 0 
1 1 0 0 1 0 
1 1 1 0 1 0 

 

 

Table 13.2 

Input vector
(x1, x2, x3,) 

Detected 
faults 

Fitness function 
value 
 h= Fn *r 

000 x4 = 0, x5 =0, 
x6=0 

3∗10 

011 x2=0, x3=0,  
x5 =1, x6=1 

4∗10 

101 x2=1, x4=0,  
x5 =0, x6=0 

4∗10 

111 x6=1 1∗10 

From the beginning the initial test vectors population is generated in a random 
way. For example the initial population is shown in table 13.2 for circuit fig.13.7. 

Here in second  column the detected single stuck-at faults are shown for each 
population individual – binary test vector. Obviously that test vector detecting 
more faults should have more chance to be inserted in test sequence. So at initial 
stage we take the fitness function h=Fn*r, where Fn is number of newly detected 
faults with corresponding individual (test vector) and r is “bonus” for each de-
tected fault (for our example r=10). In real program system number of newly de-
tected faults Fd is determined with using of fault simulation. Obviously the best 
individual (binary vector 011 or 101) with maximum fitness function value 
h=Fd*r must be inserted in test. Let for example the binary vector (101) is inserted 
in test. Further for next population generation it is necessary to apply the genetic 
operators – one(two)-point crossover and mutation. Once two individuals are se-
lected, the crossover operator is used to generate two offspring.  
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As new individuals are generated, each bit is mutated with given small proba-
bility  Pm. In simplest case of binary-coded GA mutation may be done by flipping 
a random selected bit.  While in a non-binary coded, mutation involves randomly 
generated a new value in a specified  position. So mutation produces incremental 
random changes in the offspring generated through crossover and brings new 
properties for individuals. Each new individual (test vector) must be evaluated 
with fitness function. Obviously the fitness function must take into account newly 
detected faults number for given test vector. Let after two generations current test 
set consists of two test vectors (101, 011), which detect (non detect) the faults 
shown in table 13.3. The current population of vectors is presented in table 13.4. 

 
Table 13.3 

Test  
vectors 

Detected faults with current test 
sequence 

Undetected faults with  
current test sequence 

101 X2≡1, x4≡0, x5≡0, x6≡0 X1≡0, x1≡1, x2≡0, x3≡0, x3≡1, x4≡0, x4≡1, x5≡1, x6≡1 
011 X2≡0, x3≡0,x5≡1, x6≡1 X1≡0, x1≡1, x3≡1, x4≡1 

  
Table 13.4    

Input vector 
(x1, x2, x3,) 

Detected faults Fitness function value  
h= Fd *s+ Fn *r 

000 x4≡0, x5≡0, x6≡0 0*10+3*1=3 
001 x2≡1, x4≡0, x5≡0, x6≡0 0*10+4*1=4 
100 x2≡1, x4≡0, x5≡0, x6≡0 0*10+4*1=4 
110 x1≡0, x2≡0, x4≡1, x6≡1 2*10+2∗1=22 

 
Note that here we have fitness function h= Fd*s+ Fn*r where Fn is a number of 

newly detected faults and Fd is a number of earlier detected faults with corres-
ponding individual (test vector). Here r=10  is  bonus each newly detected fault 
and   s=1  is  bonus each early detected fault. In concordance with table 13.4 data 
the test vector (110) must be inserted in test sequence because it has maximum fit-
ness function value. In the next table 13.5 the situation is shown for current test 
that consists of three vectors and has only two undetected faults. 
 
Table 13.5 

Test vectors Detected faults Undetected faults with  
current test sequence 

101 X2≡1, x4≡0, x5≡0, x6≡0 X1≡0, x1≡1, x2≡0, x3≡0, x3≡1, x4≡0, x4≡1, x5≡1, x6≡1 
011 X2≡0, x3≡0,x5≡1, x6≡1 X1≡0, x1≡1, x3≡1, x4≡1 
110 X1≡0, x4≡1 x1≡1, x3≡1 

 
Similarly may be shown that at the next step the test vector  (010) must be in-

serted in test, because it detects  the last faults x1≡1, x3≡1. Overall test generation 
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genetic algorithm on base described approach of may be represented by way of 
following pseudocode. 

 
Test generation(circuit) 
 { 
 Circuit initialization; 
         Initial vectors population generation; 
         While(stopping criteria met) 
      { 
                fault simulation; 
                fitness function evaluation; 
                insertion the best vector  in test; 
               genetic operators execution; 
               reproduction; 
               crossover; 
               mutation; 
              new population generation; 
              }         
           test sequence output;  
          } 
 
Here at initialization stage the  fault list is generated and other auxiliary opera-

tion are executed. Usually the initial vectors population is generated in a random 
way,  but a priori and available information about good vectors  may be used also. 
Fitness function evaluation is based on fault simulation. Note that in described ap-
proach the genetic algorithm solves at each step the local problem of next test vec-
tor search (not whole test sequence) in contrast basic GA, described in part 13.1 
which is used as a rule for global problem solution. In next section we shall con-
sider the global GA application for test generation for sequential circuits where the 
individual represent the whole test sequence but not single test vector.  

13.2.2 Test generation genetic algorithms for sequential circuits 

The test generation problem for sequential circuits is much more complex and 
its target setting depends on observation time test strategy [4]. Let good sequential 
circuit realizes finite state machine (FSM) A=(X,Y,Z,δ,λ), where X is the input 
set, Y is the set of states,  Z is the output set, δ:Y×X→Y is the next state function, 
λ:Y×X→Z is the output function.  Since we consider the structure model of se-
quential circuit then functions  δ  and  λ are implemented with combinational cir-
cuits accordingly Hafmen model  

Y=(y1,...,yk),  where  yi=(0,1)  for  ki ,1= ;                                                      (13.3) 
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 X=(x1,…, xn),  where xj=(0,1)  for nj ,1= ;                                                    (13.4) 

Z=(z1,…, zm),  where  zj=(0,1)  for mj ,1= .                                                    (13.5) 

Further we use the following notations[6]: X(1), X(2),…, X(p) denotes an input 
sequence of length p; Y(y0,0), Y(y0,1),…, Y(y0,p)  denotes the state sequence de-
fined by initial state y0; Z(y0,1),…, Z(y0,p) denotes the output sequence defined by 
initial state y0 and input sequence X(1), X(2),…, X(p); zj(y0,t) is the value at the j-th  
primary output  after simulation step t. Using these notations the next state is de-
fined by   




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=

=
0))1,(),((

0
),(

0

0
0 forttyYtX

fory
tyY

δ
.                                                        (13.6) 

Similarly the output Z(y0,t) is defined by the function λ . A fault f  transforms a 
state machine  M into a  machine Af =(Y,X,Z,δf,λf), where functions δf,λf are de-
fined analogically. Further we consider the different observation (respectively de-
tection) time test strategy for sequential circuits. 

Definition 13.1. A single stuck-at fault is detectable by  input sequence X(1), 
X(2),…, X(p) with respect the single observation time test strategy (SOT) [6,7] if 

)),(),((:),(,,},1,0{ btqzbtrzqrkiptb f
ii =∧=∀≤∃≤∃∈∃ , with r  an ini-

tial state of fault-free circuit and q  an initial state of faulty circuit. 
According above definition a fault is SOT-detectable if there is a unique mo-

ment t such that independent of the initial states r and q of good and faulty ma-
chines  the output values on a particular output are different. For sequential cir-
cuits sometimes the other strategy is used that allows more precisely to define the 
fault detectability. 

Definition 13.2. A single stuck-at fault is detectable by  input sequence X(1), 
X(2),…, X(p) with respect the  multiple observation time test strategy (MOT) 
[6,7]  if 

)),(),((:}1,0{,,),( btqzbtrzbkiptqr f
ii =∧=∈∃≤∃≤∃∀ . 

The fundamental difference between these two strategies is in following. Ac-
cording to MOT, the is an individual time moment  for each possible initial state 
pair (r,q), such that output signals on particular output are different.  Obviously 
that MOT strategy is more general the SOT. Some fault may be MOT-detectable  
but not SOT-detectable. So the test generation goal for sequential circuit is to find 
input sequence X(1), X(2),…, X(p) for that it holds true Def.13.1  or Def.13.2 de-
pending on using strategy.  It is natural that the second strategy requires more the 
computer resources. So we  use basically the SOT strategy. But the genetic based 
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test generation algorithms allow to generalize the obtained results to MOT strate-

gy in contrast structural methods where it is problematic. 
 

a) individuals  b) populations 

Fig.13.8 Encoding Of individuals and population in GA 

Further  for  GA test generation of sequential  circuits we will use as an indi-
vidual a test sequence that is represented by binary table (Fig. 13.8 a). Here the 
column number is determined with circuit inputs number and the test length  de-
termines the row number. In this case the   population consists of the fixed number 
of test sequences, possibly, different length (Fig.13.8 b).For the chosen encoding 
of individuals and populations the following problem oriented genetic operators 
can be used [4,6,8]: 

Crossover.  

1. The classic one point crossover. In this case the table is interpreted as one bi-
nary string. 

2. The horizontal crossover where parents are crossed with subtables after some 
time point t<p as is shown at fig.13.9.  

3. The vertical crossover where parents are crossed with random selected colomns 
as is shown at fig 13.9. 

4. The free vertical crossover it is executed in the following way [keim]. Here 
crossover point is selected for each row and each pair is crossed by correspond-
ing substrings. Note that this modification is the generalization of above vertic-
al crossover.  

5. The uniform crossover where each offspring gene is copied from one the par-
ents accordingly random binary mask as it is shown at fig.13.4.  

6. Structural crossover is the generalization of vertical crossover where also the 
parents are crossed by columns. Here it is used the exchange by columns 
groups corresponding to one treelike subcircuit. At that approach the exchange 
is directed to internal circuit check points that increases the test generation ef-
fectiveness for internal faults. Note that this crossover may be applied dynami-



13 

 

cally that is the partition of circuit to treelike subcircuits is doing for specific 
fault of the given circuit. 

                a) horizontal crossover                                               b) vertical crossover 

Fig.13.9 Operations of the horizontal and vertical crossing GA 

So crossover is implemented with using above six independent operators that 
are selected randomly   with probability P1, P2,…, P6,  which are derived experi-
mentally under condition P1+ P2+ P3+ P4+ P5+P6=1. 

Then as usually the generated offspring are mutated  and three types of this op-
erator accordingly are used with probabilities 

1mP , 
2mP  and 

3mP : 

1. Delete of one input vector from the by random chosen position. Application of 
this operation allows to reduce the length of the generated test sequence in that 
case, when a remote vector does not worsen test properties of sequence; 

2. Addition of one input vector in random position, that also allows to extend the 
search area of decisions; 

3. Random replacement of bits in a test sequence. 

Similarly the random selection is used between these operators. 

13.2.3 Problem-oriented fitness functions for test generation  

The fitness function type plays key role in the GA-based search process. There-
fore it is important to consider different types of fitness and evaluation functions, 
which are used in GA-based test generation methods. 

The goal of testing process is to obtain different output values of good and faul-
ty devices. Therefore the fitness function may be defined as measure of signal val-
ue changes in the simplest case [4]. In this case a fault free logical simulation may 
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be used. Another and more accurate approach is to define fitness function as 
measure of detected faults. In this case more complex fault simulation is used, but 
such approach allows obtaining quite good results. Obviously, that the number of 
signal value changes and the number of detected faults are important parameters 
having influence on the effectiveness of test generation process. There are certain 
parameters, which are important to the evaluation function definition and to the ef-
fectiveness of test generation for sequential circuits in modern test generation sys-
tems:  
1. N  – the number of nodes in circuit 
2. Nd – the number of nodes with different values in the fault free and in faulty 

circuits 
3. T   – the total number of flip–flops 
4. Td – the number of flip–flops that changed state 
5. E  – the number of events in the fault free and in faulty circuits 
6. L  – the length of test sequence 
7. F  – the total fault number; 
8. Fd  – the number of detected faults; 
9. Fdt  – the number of faults propagated to flip–flops; 
10.D – fault detectability; 
11.W – sequence power; 
12.O – flip-flop observability; 
13.Ef  – the number of events in the faulty circuit; 
14.Ts – the number of  flip–flops which are hardly to set.  

In addition to mentioned above parameters the effectiveness of test generation 
algorithms depends on basic components of genetic algorithms - population size, 
crossover and mutation probability, generation numbers etc.   

In CRIS [9] the hierarchical simulation technique is used that allows to reduce 
memory expenses and to deal with very large circuits. The classical GA is used, in 
which population evolves from generation to generation through reproduction, 
crossover and mutation. Each individual represents the test sequence. System 
CRIS is based on continued mutation of test sequence and its analysis with simu-
lation procedure. Given system demonstrates good results (it is fast and produces 
compact test sequences with high fault coverage for combinational and sequential 
circuits) but has essential drawback – the manual tuning GA parameters for each 
circuit. 

System GATEST [10,11] is oriented to the sequential digital circuits and based 
on two–level GA. The first level GA generates single test vectors; the second level 
GA generates test sequences from these obtained vectors. Accordingly in the first 
level GA individuals correspond to single test vectors, while in the second level 
GA they are test sequences. GA uses different crossovers:1–pointed, 2–pointed,  
uniform.  

The first–level GA is subdivided to three phases. Thus GA has four phases. The 
evaluation functions are different according to the algorithm phase: 
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•  in the first phase, the algorithm goal is the flip–flop initialization and so evalu-
ation function is defined as follows  

T
TTh d+=1 ,                                                                                                      (13.7) 

here evaluation process uses only the fault-free logical simulation; 

• in the second phase, all flip–flops are assumed to be initialized, and the goal is 
finding new test vectors able to detect additional faults; so evaluation function 
is  

FT
T

Fh d
d +=2 ;                                                                                                 (13.8) 

• the third  phase comes if the generated vector does not detect additional faults 
and uses the following evaluation function 

NF
E

FT
FFh dt

d ++=3 ;                                                                                       (13.9) 

if the generated vector detects additional faults than algorithm returns back to 
phase 2; otherwise if number of the unused vectors exceeds the definite limit than 
algorithm comes to phase 4; 

- in the fourth phase test sequences are generated from designed vectors and GA 
uses the following evaluation function  

TLF
F

Fh d
d +=4 .                                                                                            (13.10) 

In phases 2–4 evaluation uses the fault simulator that slows down the test gen-
eration process. This package show good results: high fault coverage and low ex-
ecution times for sequential benchmark circuits. But it also has the same drawback 
– the manual tuning GA parameters (alphabet size, iterations number, population 
size, mutation rate). 

The interesting approach is used in package DIGATE [11,12]. It is organized in 
two phases: 
– the first phase selects a target fault and GA activates it to flip–flop; 
– in the second phase GA searches the sequence that makes the target fault ob-
servable at the circuit primary outputs. It uses the distinguishing sequences that 
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able to propagate a fault effect from flip–flop to primary outputs. The distinguish-
ing sequences are pre–computed and stored for future use. The test sequences are 
constructed as concatenation of activating and distinguishing sequences. Evidently 
here each individual is a sequence. The evaluation uses the fault simulation. Ac-
cordingly the phase 1 and 2 have the following evaluation functions 

)(1.0)(7.02.01 dsf TTEOWDh +++++= ,                                                (13.11) 

)(1.0)(1.08.02 dsf TTEOWDh +++++= .                                                (13.12) 

The weighted coefficients were found heuristically for each phase, but they are 
universal for any circuit. It is advantageous difference of considering method from 
previous packages. 

In another system GATTO the individuals are input sequences too [13]. In this 
package the basic effort is directed to determination of the evaluation function as 
the measure of closeness to the optimum solution. The individuals are evaluated 
with fault simulation according to their activity (the more lines with different sig-
nal values in good and fault circuits the more value of detectability probability). 
So the evaluation function depends on three basic parameters: the weighted num-
ber of gates with different signals in good and faulty circuits, the weighted flip–
flop number with different signals in good and faulty circuits, and the sequence 
length. The weights are empirical measures of gate and flip–flop observability ac-
cordingly. The last parameter is used for improvement of test sequence compact-
ness. So evaluation function for a single input vector combines the above parame-
ters 

),(),(),( 2211 fvfcfvfcfvh += ,                                                                  (13.13) 

here f  is the fault being considered and v  is input vector; 1c  and 2c  are norma-
lization constants, while 1f  and 2f  represent the weighted sums mentioned 
above. 

The evaluation function H  for the entire sequence s  is computed according to 
the best vector it contains 

)),((max),( fvhLHfsH i
i

svi

∗=
∈

.                                                                     (13.14) 

Here constants )1;0(∈LH ; i is a position of the vector iv  in the sequence s. Due 
using this evaluation function shorter sequences are preferred and the final test 
length is reduced. 
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 This approach does not contain the handle tuning of GA parameters for each 
circuit also. 

The most effective is the test generation method that combines advantages 
structural deterministic and GA-based approaches. In this case the phase of  enter-
ing fault and primary output activation is executed with deterministic  method and 
multivalued logic, and the phase of  justification – the search of circuit inputs jus-
tified requirements obtained at first phase, is carried out with GA. Also the pers-
pective approach is application of parallel GA where several populations of solu-
tions are simultaneously evolved, basically independently of each other. But time 
to time the exchange of the best solutions is executed between populations in dif-
ferent methods. The nature of test generation problem is hierarchical therefore it is 
reasonably to use hierarchical GA, where at every level different GA is applied. 

13.2.4  GA test genetation implementation 

The general approach to genetic test generation lies as follows. We use the in-
dividual encoding with binary tables as shown above at previous section in 
fig.13.8. For such kind of individual encoding  and population representation the 
above described special problem-oriented genetic operators are used. The test 
generation process contains three phases. The first phase goal is the fault sensitiza-
tion. Here the signal difference good and fault circuit is propagated to pseudoout-
puts.  Then the second phase is executed for test properties improvement for se-
quence generated at first phase. This phase is algorithm kernel and use the genetic 
algorithm. After that at second phase the test sequence is generated the fault simu-
lation is necessary to determine the undetectable faults.   

The general pseudocode of test pattern generation is bellow.  
 
Test_ generation(sequential circuit) 
{ 
 
  fault set generation(); 
 while(fault coverage < given threshold) 
 { 
   //Phase1 
   goal = fault sensitization();  
   if  (goal == empty set) 
        exit; 
   //Phase2 
   sequence = GA test sequence generation(goal); 
   // Phase3 
   if (sequence != empty) 
       fault simulation(sequence)  
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   else             // test sequence for goal fault not found 
           mark fault as untested(); 
  }                                   
} 
 

GA test sequence generation(goal=f) 
{ 
  For ( i=0 ; i<MAX_GENERATIONS; i++) 
  { 
    For ( each individual s in population P ) 
      Fitness_evaluation(s, f ); 
    new  P=∅; 
    for  (k=0 ; k< MAX_NEW_INDIVIDUALS  ; k++ ) 
    { 
      selection of 2 sequences s1 and s2 in P; 
      crossover(s1,s2); //генерируются две особи  
      mutation(si); 
      newP=newP∪s; 
    } 
    P=(best MAX_individuals from newP and P ); 
    for( each individual s in population P) 
      if( s detect f ) 
        return s; 
  } 
  return( no_sequence ) 

} 
 
 

Two fault simulation algorithms were integrated in order to accelerate test gen-
eration. The first one is single pattern parallel fault propagation (SPPFP) method 
that is used in phase 1 for checking activation of any given fault by randomly gen-
erated sequence.  Here the fitness functions defined with formulas (13.13, 13.14) 
are used. The evaluation function is computed with the help of second fault simu-
lation algorithm that belongs to the group of parallel pattern single fault propaga-
tion (PPSFP) methods. The second one was developed especially to using in GA 
based test generation algorithm. 
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13.3 Distributed test generation methods 

Today numerous modifications and generalizations of GA are suggested [69]. 
The parallel GA (PGA) are roughly upcoming and very promising from the theo-
retical investigation and practical application points of view [14-16].    

13.3.1 GA parallelization  

Inherent GA "internal" parallelism and possibility of the distributed calcula-
tions promote to development of parallel GA. The first papers in this direction 
were appeared in 60-th years. But only in 80-th years, when accessible tools of pa-
rallel realization were developed, the PGA investigations adopted systematic mass 
character and practical orientation. Numerous models and realizations were devel-
oped in this direction, some of which are represented below . 

First of all necessary to note that the basis of PGA is population structuring – 
decomposition to few subpopulations (subsets). This decomposition can be ful-
filled with different methods, which define different types of PGA.  Further we 
shall consider the modern main methods of the PGA realization.  

 
 

                   a)                                                         b)                                                     c) 

Fig.13.10 Different types of parallel GA: a) global PGA, b) distributed PGA, c) cellular PGA.  

Most known is global parallelism which represented on Fig. 13.10.a). This 
model is based on simple (classic) GA in which the fitness function calculations 
are performed in parallel. This approach is faster, than classic sequential GA and 
does not usually require balance on the load as on different processors. This model 
often named "master-slave". Many researchers use the pool of processors for the 
increase of speed execution of algorithm. At the same time the independent pro-
gram running of algorithm at different processors are executed essentially faster 
than at one processor. It must be noted, that in this case there is no co-operation 
between different runs of algorithm. It is extraordinarily simple method of paralle-
lization and it can be very useful. For example, it can be used for the decision of 
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the same task with different initial conditions. GA allow effectively use this me-
thod by virtue of their probabilistic nature. At the same time we have minimum 
program changes, but advantages are considerable. 

In distributed PGA (Fig.13.10.b) a population is divided to a set of subpopula-
tions, which evolve independently (accordingly to simple GA) and can communi-
cate with neighbor subpopulations in certain manner after some “isolation time”. 
This parallel paradigm is often implemented in an extraordinarily popular "model 
of islands" (coarse grain), where great number of subalgorithms simultaneously 
work in parallel, exchanging in the search process by some individuals. This mod-
el assumes direct realization on the computing systems with MIMD- architecture. 
Thus every “island” corresponds to its own processor. 

In cellular PGA (fine grain) (Fig. 13.10.c) there is a set of subpopulations con-
sisting of only one individual. Given individual-subpopulation can communicate 
only with neighbor individuals-subpopulations at once. A neighbor relationship is 
defined as certain regular structure –grid (Fig.13.10.c). For cellular PGA paral-
lelism is usually implemented on the computer systems with SIMD-architecture, 
where every processor represents subpopulation-individual. Although another pa-
pers are known where authors use single possessor computers and systems with 
MIMD-architecture. 

13.3.2 Parallel test generation method based on the “master-slave” 
model. 

In this section for parallelization of GA we use a model «master-slave», be-
cause it requires the small changes in the existing software implementation of  test 
generation GA and gives quite good results. 

In this approach every processor has its own copy of population. The calcula-
tion expenses of fitness-functions values (witch use a logical simulation) are even-
ly distributed to all processors. For all processors the same list of faults is used. 
Therefore for n individuals and P processors we take the nP /  individuals to 
every processor. The values of fitness-functions are calculated by the slave pro-
cessors and are sent to one selected processor-master, which collects all informa-
tion and passes it to all processors. Every processor has information about the val-
ues of fitness-function for all individuals and can create next population 
generation on this basis.  

So the processor-master executes central part (kernel) of test generation algo-
rithm, while the logical simulation (fault-free and fault) of digital circuits are im-
plemented on processors-slaves. The fault simulation is most critical with point of 
view of calculation expenses. Different methods of the distributed fault simulation 
are known, which are mainly based on decomposition: 1) circuits on subcircuits; 
2) test sequence on subsequences. We will take combined approach of these two 
methods. 
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On the first and second stages the simulated input sequences are distributed be-
tween working processors. On the first stage every working processor is loaded by 
the generation (simulation) of one subsequence. For balance the list of undetected 
faults is broken up on approximately identical subgroups. 

At the end of each of three stages the points of synchronization are placed. 
When a processor-master arrives at these points, it goes to the wait mode, while all 
working processors will not make off the tasks that guarantee global correctness of 
algorithm. Thus work is distributed between a processor-muster and workers as 
follows. 

Processor-master: 

• Performs all input-output operations with an user and file system: it reads cir-
cuit description and  fault list, and writes the generated input test sequence; 

• Initially runs «slave» processes on available resources; 

• Distributes the copies (internal form) of circuits and fault lists to every working 
processor; 

• Organizes the process control of test generation: as soon as input sequence has 
to be fault simulated, it sends the proper message for activating of working 
processors; when working processors finish their work, processor- master rece-
ives results and accordingly changes global data structures (general fault list, 
values of fitness-functions for individuals etc). 

Fig.13.11 Data flow diagram for distributed test generation and fault simulation algorithms 

A processor-worker keeps the local copy of circuit (in internal format) and fault 
list. Every «worker» takes an input sequence from the «master» and determines 
the faults are detected by this sequence by the logical simulation and calculates the 
values of fitness-function for individuals. It sends the obtained results to the mas-
ter and wait next task. As the population size is much larger than a number of pro-
cessors, good balance in the load of processors is achieved. For every working 
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processor the change of local fault list with the detected and undetected faults 
from other working processors requires a lot of resources and it is critical.  

Final results (test input sequences and fault coverage) are near to the results ob-
tained on the single possessor computer system with the use of a similar algo-
rithm. Quality of decision (test fault coverage) is not here lost and is in most cases 
got better, and time of test generation grows short substantially. The data flow di-
agram of considered algorithm is cited on fig.13.11. 

13.3.3 Distributed fault simulation 

Described above distributed genetic algorithm of test generation is based main-
ly on the distributed fault simulation algorithm. Now we will shortly describe also 
this method. 

One of the central problems of digital device diagnostic is fault simulation of 
digital circuits. And persistent increasing of modern device complexity makes the 
task of reducing fault simulation time still actual. One of possible ways to speed 
up fault simulation procedure is adaptation of existing algorithms for multiproces-
sors computing systems (clusters) implementation. 

Distributed fault simulation is organized in similar way and is based also on the 
«master-slave» approach like distributed test generation. One processor here is se-
lected as master and remained processors – as slaves. There exist several ap-
proaches to implementation of distributed fault simulation: partitioning of circuit 
and partitioning of fault list . Our algorithm is based on the fault list partitioning. 

Data flow chart for this scheme of computational process is showed on 
fig.13.11.  

Every slave processor performs fault simulation on the data received from the 
master: circuit description and  fault sublist. The pseudocode of this process is 
given below. 

 

slave_process_fault_simulation() 
{ 
  search_of_master_process(); 
  if( master_was_found ) 
  { 
    receive_circuit_description(); 
    receive_fault_sublist(); 
    parallel_fault_simulation() 
    send_list_of_undetected_faults(); 
  } 
} 
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The kernel of this process is the procedure «parallel_fault_simulation», which 
is a regular fault simulator that used in single processor implementation. In our 
case we used home built PROOFS-based fault simulator, described in [17]. Mark 
the main advantages of this algorithm that makes it very successful: 1) dynamic 
fault-list processing: detected fault is eliminated from fault list in the same time it 
detected, no simulation performs for this fault further; 2) fault sorting which al-
lows include in one group the faults that cause the same simulation events; 3) the 
technique of functional fault injection.  

Common data flow chart diagram that describes interaction among master and 
slaves processes is shown on Fig.13.11. 

It is necessary to notice that master process performs two types of exchange 
operation. File input/output operations are necessary to obtain circuit description 
and test sequence to be simulated. In contrast all data interchange among master 
and slave process is performed via TCP/IP sockets. This fact enables to construct 
computing cluster on the common used computers. Authors used as such cluster 
100Mbit local intranet. 

Data flowchart diagram shows that master processor does not perform any si-
mulation but organizes the computing: 

• Reads the circuit description to be simulated and input test sequence; 
• Sends this description and test sequence for all client processors; 
• Receives from slaves fault simulation results and makes common report. 

Algorithm for master process for distributed simulation is given below. 

distributed_simulation(circuit,test) 
{ 
  number_of_slaves = search_of_slaves(); 
  if( number_of_slaves != 0 ) 
  { 
    input_circuit_description(); 
    input_test(); 
    make_full_fault_list(); 
    partiting_the_fault_list(number_of_slaves); 
    for( i=0 ; i< number_of_slaves ; i++ ) 
    { 
      send_to_client_i_circuit_description (); 
      send_to_client_i_part_of_fault_list(); 
      send_to_client_i_test_sequence(); 
    } 
    for( i=0 ; i< number_of_slaves ; i++ ) 
    { 
      receive_list_of_undetected_faults(); 
    } 
    make_report(); 
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  } 
} 
Master process starts with search procedure of calculation clients. Further it di-

vides full fault list into sublists prorate number of found clients. Then for all 
clients the following operation sequence is fulfilled in cycle: sends circuit descrip-
tion in internal format; sends test sequence and corresponding short fault list. Af-
ter that master transfer to state of waiting data from clients. At the next step master 
receives the results of fault simulation from each client and makes general reports: 
fault coverage, common simulation time, time of simulation on every clients. The 
constructed in described way distributed fault simulation algorithm allows a high 
parallelization of simulation process. 

13.3.4 Distributed test generation based on the "model of islands"  

In this section for GA parallelization the "model of islands" is used. Here sepa-
rate subpopulation, which is initialized randomly and evolved independently, is 
realized on each processor. In given iteration number subpopulations are ex-
changed by some individuals in certain way. Each processor select the best indi-
viduals of own subpopulation and send them to neighbor processors subpopula-
tions (neighborhood concept is a parameter of method). These individuals are 
accepted in neighbor processors subpopulations and then independent evolution 
on each processor-“island” is continued.  

In this approach there are more chances to obtained high-quality solution, since 
different areas of search space are investigated on different processors [90-92]. 
Moreover in this case it is possible the reducing of search time due to the best in-
dividual migration.    

In contrast to previous method (“master-slave” model), where GA works only 
on the central processor-master and processors-slaves are used only for fitness 
function computing, in this approach full GA is implemented on every processor. 
In other words each processor executes full cycle of GA evolution operations: 
fault-free and fault logical simulation, test sequences generation. Each processor 
works with full circuit and fault list. At the same time there are two reasons of 
speeding-up test generation process at least. Every processor operates with subpo-
pulation of less dimension that less time is required. Due to the best test sequences 
migration each processor can detect faults quicker then in case of independent op-
eration in subpopulations. One of the most important parameter of this model is 
population power (individual number) of subpopulation. The influence and selec-
tion of this parameter will be considered below. 

The main factors that affect on migration in "model of islands" (hence it affect 
to effectiveness) are as following: 
Migration rate – a number of exchanged individuals; 
Selection method of individuals for migration; 
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Isolation time which defines generation number between migration phases; 
Strategy of individual replacement with migrated individuals from neighbor sub-
populations; here also there exist different approaches the worst individuals are 
replaced, random individuals are replaced in subpopulation etc.;  
Replication strategy of migrating individuals. Under first approach migrating in-
dividual also stays in starting subpopulation. The second approach demands re-
moval of migrating individual from starting subpopulation. The first strategy can 
result in domination the same strong individuals in different subpopulations. Un-
der the second strategy an individual can return back to start subpopulation in 
some time that results in extra computing expenses;       
Topology which defines neighborhood relationship between subpopulations, here 
exchange is fulfilled only between neighbor subpopulations.  

There exist several standard methods of selected individuals exchange between 
subpopulations. Time expenses to individual migration between subpopulation 
depend of used exchange method.  

• Exchange by the ring: 

In this method individuals can migrate to one neighbor subpopulation. In this 
case the number of  1−= nm  , where n – the number of computers; 

• Two-way exchange by the ring: 

Here, likewise to previous method, exchange of individuals is executed be-
tween the closest neighbors, and neighborhood relation is defined by two-
dimensional structure.  

13.3.5  Implementation and experimental investigations of 
distributed genetic algorithms of test generation and simulation 

 
Developed algorithms were implemented with using blocking sockets technol-

ogy in C++ Builder programming environment. For computer experiments the 
computing cluster on the base of 100 Mbit local intranet was used. The cluster 
nodes have following parameters: Intel Celeron 2 GHz processor, RAM 256 Mb, 
OS Windows XP. 

For research of effectiveness of suggested algorithms following time parame-
ters were calculated during computer experiments: whole time of simulation 
process, events number in fault-free and fault simulation, whole number of events. 
For comparison the experimental results of algorithms from [2] were taken.   

At first let consider experimental results obtained for distributed GA imple-
mentation based on the “worker-farmer” model. The diagram of simulation speed-
ing up for circuit s35938 (ISCAS89), under condition of change of processors-
client number from 1 to 8, is represented on fig.13.12. Given experimental results 



26  

confirm the effectiveness of suggested parallelization method of simulation algo-
rithm. Finally on the fig.13.13 the simulation results for large circuits of ISCAS 
benchmark are represented. These data show the relative speeding-up with in-
crease of circuit size.  It is explained by that fact that for large circuits the ex-
penses of parallelization are reduced compare with fault simulation expenses.  
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Fig.13.12. Speeding-up  of fault  simulation for  
circuit 35938 according  to worker  number 
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Fig.13.13. Speeding-up   according  to circuit 
complexity 

 
 

Table 1  

Circuit from ISCAS89 benchmark Speeding-up relatively to one pro-
cessor 

Fault coverage increase  

S1196 1.59 +0.8% 
S1238 1.8 +0/6% 
S1423 1.1 +12.8% 
S1488 6.1 +7.1% 
S5378 5.16 +1.3% 
S35932 5.35 +1.6% 

 
Further let consider the results of implementation of test generation distributed 

GA which is based on the “islands model”. In table1 there are represented experi-
mental results, which show the speeding-up and test quality for several circuits 
from ISCAS89. In this case 8 processors and ring migration method were applied.  

Obtained results confirm the effectiveness of test generation and fault simula-
tion algorithms parallelization. The comparison of experimental results show that 
“farmer-worker” model gives more speeding-up in comparison with “island mod-
el” relatively to one-processor system and essentially easier in software implemen-
tation. But “island model” raises fault coverage of generated tests especially for 
large circuits. Therefore parallelization based on the “island model” has a reason 
only in case when generated tests have unsatisfactory fault coverage for “farmer-
worker” model. 
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13.6 Hierarchical GA of test generation for highly sequential 
circuits  

Usually the sequential circuits have  the (re) set sequences that allow to install 
the memory elements to some determined states.   In this case the test generation 
is essentially  simpler.  The general and hard case of testing sequential machines is 
testing sequential machines without possibility to set it in initial state. This kind of 
machines with memory is often called highly sequential machines or circuits. In 
this case other approaches are applied [11,18].   

Hierarchical approach can be effectively applied and implemented for sequen-
tial circuits at structural (gate) level. In this case at low level the some characteris-
tic sequences are generated and then are used under test generation at high level. 

Given approach is applied to test generation in highly sequential circuits for 
hard-to-test faults . Here two-phase strategy is used for test generation: 1) fault ac-
tivation; 2) fault propagation. The iterative combinational circuit is used as model 
of sequential circuit (Fig.13.14). At first phase an attempt is made to derive a se-
quence that activates the chosen fault and propagates its effect to primary outputs 
(POs) or flip-flops (FFs). At second phase the fault effect is propagated from FFs 
to POs of iterative combinational circuit with assistance of distinguishing se-
quences basically. So, the basic problem in fault activation is transition of circuit 
under test (good and faulty) to specified set conditioned by obtained FFs input 
values (pseudo inputs). 

A transition sequence is generated with assistance of genetic algorithm. In or-
der to generate such kind of sequences with assistance of the dynamic state traver-
sal algorithm, a table of visited states is mapped to the list of input vectors in the 
test set [18]. However, if ending state was not visited then transition sequence is 
generated with help of GA. In this case initial population consists of random se-
quences of given length and the sequences, which solve problem partially. For ex-
ample, it can be input sequences that set only some FFs to necessary values. In 
this case different input sequences can set different FFs to necessary values and, 
obviously, can be useful in transition sequences generation. 
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 Fig.13.14 Two-phase strategy test generation in iterative combinational circuit 
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In this case at low level some characteristic sequences are generated that permit 

to set   the flip-flops at some deterministic values that simplify a problem test gen-
eration for sequential circuits.  

Characteristic sequences. 
For test generation at high level there are useful the following input characteris-

tic sequences. First of all we define set and reset sequences as follows: 

1. Si-sequences. A flip-flop set sequence is a sequence that sets the i-th flop  to a 
1-state; 

2. Ri-sequence. Similarly a flip-flop reset sequence is a sequence that resets the 
i-th  flip-flop to a 0-state.  

These sequences associated with flip-flops are intended  to (re)set the flip-flops 
starting from an unknown state. Such   Si (Ri) – sequences are called type A and 
generated at preprocessing step of test generation.  The sequence type A length is 
restricted with 4D, where D is sequential  depth of circuit. If Si (Ri) – sequences 
require  some flip-flops   must be (re) set to specific (not arbitrary ) states that 
these sequences are called type B. These sequences are generated dynamically in 
case of need during    test generation process.  

3. A pseudoregister justification sequence is a sequence that is able  to justify 
(set or reset)  the required  flip-flops states  for particular pseudoregister. Here 
the pseudoregister is the group of flip-flops.    

At second test generation phase a distinguishing sequences propagating fault 
effect from FFs to Pos are required. In this case three types of the distinguishing 
sequences are used [18] (Fig.13.15).  

4. The distinguishing sequence of type A for FF i is defined as a sequence that 
produce two distinct output responses when applied to the fault-free DD for 
two initial states, and initial states differ in the i-th position and are independent 
of all other FF values. 

5. The B-type distinguishing sequence for FF i is a sequence that, when applied 
to the fault-free DD with i-th FF = 0 (or 1) and applied to the faulty DD with 
the same FF = 1 (or 0) for two initial states, produces two distinct output res-
ponses independent of all other FF values.  

6. The C-type distinguishing sequence is similar to type B except that the subset 
of FFs are assigned to specific logic values. 

 For every distinguishing sequence the “distinguishing power” is assigned. It 
evaluates the possibility of given distinguishing sequence to propagate fault effect 
from according FF to PO. A distinguishing sequence has major “distinguishing 
power” if it is necessary to set specified values to small number of FFs. Also dis-
tinguishing sequences, which are able to propagate effects of several faults, have 
greater “distinguishing power”. 
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Type A Type B Type C 
Fault-free DD Fault-free DD Fault-free DD Faulty DD Fault-free DD Faulty DD 

FFs FFs FFs FFs FFs FFs 

Uuu1uuu uuu0uuu uuu1uuu uuu0uuu uuu1Suu uuu1Suu 

Fig.13.15 Types of distinguishing sequences 

The described characteristic sequences are generated with using the low level 
genetic algorithm. In this GA individuals are represented with binary tables and 
the problem oriented genetic operators (crossover and mutation) adjust to these 
tables as shown in part 13.2.2. In this case initial population consists of random 
sequences of given length and the sequences, which solve problem partially. For 
example, it can be input sequences that set only some FFs to necessary values. But 
different input sequences can set different FFs to necessary values and, obviously, 
can be useful in transition sequences generation.  

During test generation the high level genetic algorithm uses as fabricated parts 
the   characteristic sequences which are generated at low level. It makes the evolu-
tionary search   more directional and   effective. At the high level the modified ge-
netic algorithm is used. In the first place the initial population includes not only 
random binary tables, but also the generated   characteristic sequences. In the 
second place more extensive set of genetic operators is used during test genera-
tion. 

Note that the different fitness functions are used at the various level and phases. 
Since fault activation and fault propagation phases target different goals, their cor-
responding fitness functions are differed. The used parameters are as follows: 
• P1 – fault detection; 
• P2 – sum of dynamic controllabilities;  
• P3 – matches of FFs values; 
• P4 – sum of distinguishing powers; 
• P5 – induced faulty circuit activity; 
• P6 – number of new visited states. 

Parameter P1 is self-explanatory, in particular during the fault propagation 
phase. It is included in fault activation phase to cover faults that are propagated di-
rectly to the POs in the time frame in which are excited. P2 indicates the quality of 
states to be justified. P3 guides the GA to match the required FFs values in the 
state to be justified during state justification, from the least controllable to the 
most controllable FF value. P4 measures the quality of the set of FFs reached by 
the fault effects. P5 evaluates the number of events generated in the faulty circuit, 
with events on more observable gates weighted more heavily. P6 is used to expand 
the search space. Thus, on basis of considered parameters following types of fit-
ness functions are used: 

Fault activation phase: 
• Multiple time frames 

F1=0,2P1 + 0,8P4;                                                                                            (13.15) 
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• Single time frame 

F2=0,1P1 + 0,5P2 +0,2(P4 + P5  +P6);                                                             (13.16) 

• state justification 

F3=0,1P1 + 0,2(k – P2) + 0,5P3 + 0,2(P5 + P6),                                               (13.17) 

where k is a constant; 
Fault propagation phase: 

 F4=0,8P1 + 0,2(P4 + P5  + P6).                                                                       (13.18) 

Note that large value of weight coefficient of the P4 is used in fitness function 
at the activation phase. If activation sequence for target fault cannot be generated 
directly then this problem is solved in few stages: at first the fault activation is ful-
filled within a one iteration of combinational iterative circuits and then the se-
quence for setting flip-flops to target state is generated. Obviously, that the main 
parameter is the number of detected faults at the propagation phase. Therefore 
coefficient of P1 has enough large value. Note that GA cannot find out undetecta-
ble (redundant) faults. Therefore it is desirable to use a deterministic test genera-
tion method for residuary undetectable faults. 

13.7   Genetic programming in test generation of microprocessor 
systems 

Testing of microprocessor-based systems is a very serious problem. The most 
complicated task is that of generation of test sequence. Traditional structural me-
thods of test generation, which normally require the description of the logic circuit 
structure on the gate level, are not applicable for such systems owing to very high 
task dimension. The generation of test-programs of microprocessor systems (MS) 
usually was carried out at function level practically “manually”. At that the test 
represents an assembler-program unlike binary sequences for logic circuit.  

One of the most perspective approaches to the MS test pattern generation is ap-
proach based on the genetic programming (GP). Checking sequence for MS is test 
program consists of assembler language operators. Classical GP uses for individu-
al representation tree-like structures that does not allow operate arbitrary pro-
grams. Therefore in given case graph-based program representation, especially di-
rected acyclic graph (DAG), is applied (Fig.13.16) [19]. 
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Fig.13.16 DAG and Instruction Library (on the left), a sequential instruction and its parameters 
(on the right) 

Each node of the DAG  (Fig.13.16) contains a pointer to the instruction library and, if ne-
cessary instruction parameters  (i.e., immediate    values or register specifications). 
The instruction library describes the assembly syntax, listing each possible in-
structions with the syntactically correct operands. Although instruction library 
may also contain macros instead of instruction, with the exception of prologue and 
epilogue, all entries correspond to individual assembly instruction. For instance, 
(Fig.13.16) shows a sequential node that will be translated into an “ORL A, R1”, 
i.e., a bit-wise  OR  between   accumulator   and  register   R1. DAGs are built with 
four kinds of nodes: 

• Prologue and epilogue nodes represent required operations, such as initializa-
tions. They depend both on the processor and on the operating environment, and 
they may be empty. 

• Sequential-instruction nodes represent common operations,  such  as  arithmetic  
or  logic  ones  (e.g., node B, F (Fig.13.16)). Unconditional  branches  are  con-
sidered as sequential, since execution flow does not split (e.g., node D 
(Fig.13.16)). 

• Conditional-branch     nodes    are    translated    to assembly-level conditional-
branch instructions (e.g., node A (Fig.13.16)). All common assembly languages 
implement some jump-if-condition mechanisms. All conditional branches im-
plemented in the target assembly languages must be included in the library. 
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Test programs are induced by modifying DAG topology and by mutation para-
meters inside DAG nodes. Following genetic operators (mutation and crossover) 
are applied: 

• Mutation 1 - Add node: a new node is inserted into the DAG in a random posi-
tion. The new node can be either a sequential instruction or a conditional 
branch. In both cases, the instruction referred by the node is randomly chosen. 
If the inserted node is a branch, ether unconditional or conditional, one of the 
subsequent nodes is randomly chosen as the destination. Remarkable, when an 
unconditional  branch is inserted, some nodes in the DAG may become un-
reachable. 

• Mutation 2 - Remove node: an existing internal node (except prologue or epi-
logue) is removed from DAG. If the removed node was the target of one or 
more branch, parents’ edges are updated.  

• Mutation 3 - Modify node: all parameters of an existing internal node are ran-
domly changed. 

• Crossover: two different programs are mated to generate a new one. First, par-
ents are analyzed to detect potential cutting points, i.e., vertices in the DAG that 
if removed create disjoint sub-graphs. Then a standard 1-point crossover is ex-
ploited to generate the offspring. 

Fitness-function of the second level is build on the basis of coverage  measure 
of VHDL operators. Thus fitness-function exploits the data obtained by means of 
Active VHDL (code coverage). 

During construction of tests for microprocessor system is used the following 
fitness-function:   

 cacbbabboaoo NNcNNcNNcF ++= ,                                                  (13.19) 

where Nao –the number of linear statements VHDL have been activated by test-
program; Nab –the number if statements have been activated by test program; Naс – 
the number of case statements have been activated by test program, No, Nb, Nc the 
common number of linear, if, case statements accordingly; co, cb, cc  – normalizing 
constants (co + cb + cc = 1). 

The program implementation (Fig.13.17) is carried out in the Active VHDL 
environment in accordance with the following scheme. The present population of 
test-program (in assembler) is being generated by the method based on the genetic 
programming which is implemented beyond Active VHDL.  
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Fig .13.17 Program implementation 

The algorithm of  test program generation is presented below as pseudo code.   
 
generation of test-program initial population; 
While (not attained maximum number of generation) 
 // loop  according to generations 
Generation of  various paths for each test program; 
    While (not attained stop condition )   
     //loop according to paths 
 { 
    Test-program generation according to correspondent path 
     Compilation of test-program to binary code 
     Entry to Active VHDL environment  
    Loading of binary code to ROM of microprocessor  
    system VHDL  model  
  Estimation of test program coverage using Active VHDL 
   Exit from Active VHDL environment;  
   Calculation of fitness-function according to correspondent   path;   
  } // end of loop according to paths 
 
  Calculation of fitness function for test-program 
  (graph); 
   //creation of the next  generation; 
         Selection of parents according to fitness-function value; 
     Crossover; 
     Mutation; 
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               Reduction of population;          
  } //end of loop according to generations 
 
Generation of initial population is implemented on base graph of test program 

representation by link list of neighbor nodes. For each  node of graph the corres-
pondent link list of adjacent nodes have been processed. The graph complexity 
may be vary by tuning  the following parameters: number of nodes in graph, num-
ber of macros and number of successor-nodes for each node.  

The approbation of the presented approach is done for microcontroller 8051, 
the model of which is given on the function level in the VHDL language. The ana-
lyses and comparison of simulation data of circuits at the function and logic level 
show that generated test-programs have high fault coverage. At the same time the 
generation of checking tests on function level is being done essentially faster.In 
Fig .13.18 the results of genetic algorithm of test program generation's implemen-
tation for microcontroller 8051 are shown graphically. As we can see the fitness 
function has reached its maximum value equal 97.36 %.  
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Fig .13.18 Fault coverage 

Conclusions  

This paper presents new perspective approach to DS test generation that is 
based on using evolutionary algorithms and hierarchical solution. It was shown 
that given approach could be effectively applied to test generation at basic DS re-
presentation levels:FSM and structural, for highly sequential circuits, 2-levels hie-
rarchical genetic algorithm is applicable;MS level – GP-based approach is applied. 
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