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Abstract: Computations were carried out involving the lifetime of macroscopic 
ball-shaped Hydrogen Concentration (HC) inhomogeneities in palladium.  
It was shown that hydrogen-elastic stresses slow down the solubility of  
HC inhomogeneities. The influence of hydrogen-elastic stresses increases 
considerably as inhomogeneity dimensions increase. 
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1 Introduction 

Fick’s diffusion becoming slower by Hydrogen Concentration (HC) stresses is one of  
the most widespread hydrogen-elastic effects (Goltsov, 2001). This effect is a physical 
reason for a considerable slowing down of many processes connected with diffusion 
phenomena in Metal-Hydrogen (MeH) systems. In the works of Goltsov et al. (1997; 
2001), it was shown for the first time that when considering diffusion phenomena in MeH 
systems, the role and a possible importance of hydrogen-elastic effects should not be 
neglected (without a special analysis). In this paper, it was of interest to continue 
developing the physical and mathematical aspects of the diffusion-elastic model (Goltsov 
et al., 1997; 2001) on the basis of the equations of isothermal hydrogen elasticity 
(Goltsov et al., 2003), keeping in mind the importance of MeH systems, in particular, a 
possibility for ascending diffusion. The model developed in the works of Goltsov et al. 
(1997; 2001) does not provide for such a physical possibility. 

2 Results and discussion 

The nature of the hydrogen elasticity phenomenon is as follows. Interstitial hydrogen 
atoms expand a crystal lattice. Hence, any hydrogen inhomogeneities and any HC 
gradients cause the appearance of corresponding HC stresses. Fields of HC stresses 
influence hydrogen diffusion and cause a rearrangement of HC fields and so on. It is 
evident that any changing in HC fields and HC stress fields are interrelated. The 
hydrogen elasticity phenomenon takes place in metals, compounds and other materials 
when hydrogen stresses do not overcome a material limit of proportionality. 
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The hydrogen elasticity phenomenon comprises hydrogen elastic mechanical effects 
(a macroscopic reversible form-changing effect, the Gorsky effect, a reversible coherent 
swelling of a surface) and hydrogen elasticity diffusive effects (the slowdown of  
a hydrogen diffusive flow, an uphill hydrogen diffusive slow, the Lewis effect,  
thermo-baro-elastic-diffusive equilibrium effect). 

From the viewpoint of mathematics, the phenomenon of hydrogen elasticity is 
described by the system of the related differential equations, one of which is the equation 
of diffusion with the term that includes an influence of the field of elastic stresses. The 
other equation is the equation of movement, which covers a concentration field influence. 
These equations are supplemented with the equations of state connecting the components 
of the stress tensor σij and deformation tensor εij and with the equations of bonding 
between the deformation tensor and displacement vector ui components. Below, two of 
the approaches that we used for a mathematical description of the hydrogen elasticity 
phenomenon are presented.   

2.1 The first approach 

At the first stage of investigating the hydrogen elasticity phenomenon, we used the 
equations of hydrogen elasticity that were written by analogy with the equations of 
thermal elasticity (Goltsov et al., 1997). The equations describing the space and time 
variations of the deformation field and HC one are as follows: 

2
2

2
( ) (3 2 )  H

u
u grad divu grad c

t
µ λ µ λ µ α ρ ∂

∇ + + ⋅ − + ⋅ − =
∂

0,  (1) 

2 (3 2 )1
0,H cB cc

c
D t D

λ µ α+ ⋅∂
∇ − − −

∂
divu  (2) 

where: 

c = a relative atomic HC similar to temperature T in thermo-elasticity 
u = a displacement vector 
ρ = material density 

λ and µ = Lame coefficients 
αH = a linear hydrogen concentration expansion coefficient that is similar  

   to a linear thermal expansion one 

Bc =
dc

dp
 

p = hydrogen gas pressure 
D = a hydrogen diffusion coefficient corresponding to a temperature  

   conductance coefficient in thermo-elasticity. 

Equations (1) and (2) are bound, owing to term (3λ + 2µ)αH ⋅ grad c in Equation (1) and 

term 
(3 2 ) H cB c

divu
D

λ µ α+ ⋅
 in Equation (2). They describe the deformation of a solid 

body resulting from no stationary mechanical and HC effects as well as a reverse effect  
– a change in the concentration field of hydrogen in a solid body due to its deformation. 
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Then, using the relations between displacements and deformations and Hooke’s law 

(known in elasticity theory), one may proceed to stresses. Thus, Equations (1) and (2) 
describe a mutual relation and mutual influence of hydrogen distribution evolution and 
hydrogen-elastic stresses evolution in a solid body.  

2.2 The second approach 

Then, on the basis of classical elasticity theory, thermodynamics of non-equilibrium 
processes and empiric regularities, the equations of isothermal hydrogen elasticity were 
written (Goltsov et al., 2003): 

• a generalised temporal equation of time-dependent diffusive transport of hydrogen: 

*
*  

div grad grad ,H
kk

D c Ac
D c

t RT

α
σ

ρ
⎡ ⎤∂

= −⎢ ⎥∂ ⎣ ⎦
 (3) 

• the equations of motion: 

,ij
i

j

u
x

σ
ρ

∂
=

∂
 (4) 

• the equations of state: 

0

1
( )ij ij T H kk ij

v v
T T c

E E
,ε σ α α σ δ+ ⎡ ⎤= + − + −⎢⎣ ⎦⎥
 (5) 

• the equations that relate the components of the deformation tensor εij to the 
components of the vector of motion ui: 

1
.

2
ji

ij
j i

uu

x x
ε

⎛ ⎞∂∂
= +⎜⎜ ∂ ∂⎝ ⎠

⎟⎟  (6) 

The written set of equations of isothermal hydrogen elasticity describes (at T = const.) the 
interrelated evolution of elastic fields of the matrix and the fields of HCs. 

We matched these two approaches of describing the hydrogen elasticity phenomenon 
when solving the problem of dissolution of HC inhomogeneities in palladium, taking  
into account the arising stresses. In Goltsov et al. (1997), such a task was solved on  
the base of the hydrogen elasticity Equations (1) and (2) written down in analogy with  
the thermo-elasticity equations. In this paper, the mathematical model describing the 
behaviour of HC inhomogeneities is built on the base of the system of equations of 
isothermal hydrogen elasticity (Equations 3 to 6). 

The physical essence of the problem under consideration is as follows. A 
macroscopic sphere is taken out of an infinite medium; the sphere is saturated with 
hydrogen to some concentration cο. Then, this sphere is inserted in an earlier formed 
cavity. As the cavity radius is less than the radius of a newborn sphere, then deformations 
and stress appear both in the sphere and in the medium around it. What is especially 
important is that in every case, the sphere’s initial sizes and the values of HC were  
to be chosen in such a way that the appearing initial stresses did not exceed a metal 
elastic limit.  
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When considering the behaviour of HC inhomogeneities in the form of a sphere  
and keeping in mind the appearing hydrogen-elastic stresses, we obtain a case of a  
polar-symmetric stressed state. Here, only a radial motion ur is different from zero. All 

the components of deformations and motions excluding ;r
rr

u

r
ε

∂
=

∂
 и ,r

rr

u

rθθ ϕϕε ε σ= =  

σθθ = σϕϕ will be equal to zero (in the spherical coordinate system).  
As the relaxation time for mechanical movements is negligibly small in comparison 

with the one for diffusion, an inertial member ρü in the equation of motion is believed to 
be equal to zero and we go over to the equilibrium equation. With the stresses in the 
equilibrium equation and diffusion equation being expressed in terms of deformations 
and the deformations being expressed in terms of displacements, let us go over to the 
corresponding equations in the displacements. In the spherical coordinate system, they 
have the following form: 

2 3 2 2

2 3 2 2

2 4
,

c c D c u M u c N
D Mc c N

t r r r rr r r r

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + +

∂ ∂∂ ∂ ∂ ∂
2 c

r∂
 (7) 

2

2 2

2 2
0,

u L u L c
L u F

r r rr r

∂ ∂ ∂
+ − + =

∂ ∂∂
  (8) 

where L = A + B, M = –G(A + 3B), N = –3GF; 

,
1

E
A

v
=

+
 ,

(1 )(1 2 )
vE

B
v v

=
+ −

 ,
1 2 H

E
F

v
α= −

−
,

DK
G

T
=  

c = HC 
r = a radial coordinate 
t = time 

D = hydrogen diffusion coefficient 
T = temperature 

К = AMαH/ρR = a constant 
AM = a metal atomic mass (Pd) 
αH = a metal linear expansion coefficient at hydrogen dissolving 

ρ = a metal density 
R = the absolute gas constant 

σrr, σθθ and σϕϕ = stress tensor components. 

Keeping in mind that an infinite medium is under consideration, the boundary conditions 
are written in this way: 

c (∞,t) = 0 (9) 

ur (∞,t) = 0. (10) 

The initial conditions for HCs are given in the following form: 

 0
( ,0)

0  .
oc r

c r
r R

∂ ≤ ≥⎧
= ⎨ ∂ ≥⎩

ля
ля

R
 (11) 

The analysis of Equations (7) and (8) shows that distribution ur (r,0) can be obtained from 
Equation (8) by the given initial conditions (Equation 11) for HCs. 
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Differential Equations (7) and (8) under the boundary and the initial conditions 

(Equations 9 to 11) make up a closed system of equations which are a mathematical 
model of a temporal behaviour of sphere-shaped concentration inhomogeneities of 
hydrogen in an infinite elastic medium (for example, in a metal whose elastic properties 
are characterised by Young’s modulus E and Poisson’s ratio ν). 

A mathematical modelling was concretely defined, as in Goltsov et al. (1997), for  
the system palladium-hydrogen at the following values of constants: E = 1.15 × 1011Πα; 
ν = 0.3; αH = 0.063. The temperature was measured in the range of 300–700 K. The 
radius of inhomogeneities varied from 1 to 5 mm. The initial HCs were changed from 
0.001 to the maximum values when the initial stress did not exceed σ0.2 (σ0.2 = 56 MPa). 
The radius of inhomogeneities increases and, as a natural result, a permissible HC  
that causes stresses larger than σ0.2 of palladium decreases. To compare numerical 
computations, an initial HC in the inhomogeneities in all cases was taken equal to 0.006. 

The system of Equations (7) and (8) with the given initial and boundary conditions 
was solved by numerical methods with the use of specialised software. The programme 
makes it possible to obtain dependences c(r), σrr(r), σθθ(r), εrr(r), εθθ(r) and ur(r) and 
display them in the given periods of time. 

The main results of the ‘computer experimentation’ on the basis of the developed 
mathematical model of the diffusion-elastic behaviour of a sphere-shaped concentration 
inhomogeneity of hydrogen in palladium are as follows. 

A temporal picture of the evolution of concentration curves and a corresponding 
evolution of the field of stresses, deformations and displacements have been obtained. 
Comparison of all the concentration curves was done by the parameter τ that 
characterised the lifetime of inhomogeneities, this lifetime being taken as the time of a 
double decrease of HC in an inhomogeneity centre. The corresponding quantitative 
characteristics of the model ‘lifetime’ were generalised in the form of dependences of an 
inhomogeneity lifetime τ on temperature T and their initial sizes Rο. 

The results of the computer investigations are summarised in Figures 1 and 2. In 
Figure 1, the data from Goltsov et al. (1997) are dotted to make a comparison. Curve 2 
gives the temperature dependence of a concentration inhomogeneity lifetime in the  
case where hydrogen-elastic stresses do not work and an inhomogeneity resorption is 
defined only by Fick’s diffusion. Curve 3 presents the temperature dependence of  
an inhomogeneity lifetime in the case where operating hydrogen-elastic stresses are 
modelled by analogy with temperature stresses (Goltsov et al., 1997). 

As can be seen in Figure 1, both models of the hydrogen elasticity phenomenon 
(compare Curves 1 and 2 and Curve 3) give qualitatively close results: at every 
temperature, the resorption of an HC inhomogeneity becomes much slower when HC 
stresses (Curves 1 and 2) are in force in comparison with the model when a diffusion 
mechanism of resorption takes place according to Fick’s law. It is noteworthy that as the 
temperature decreases, the slowdown becomes more apparent. For example, at 300 K,  
the time of the only diffusion resorption of an inhomogeneity is 23 sec (Curve 3) and in  
the case of a hydrogen-elastic model, τ = 18 sec (Curve 1). The diffusion process of an 
inhomogeneity resorption becomes slower by a factor of 47. 
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Figure 1 Temperature dependence of the lifetime of a concentration inhomogeneity of a 1 mm 
radius with the initial concentration cο = 0.006 

Notes: (1) an elastic-diffusion regime (the isothermal hydrogen elasticity equations are 
used); (2) an elastic-diffusion regime (Goltsov et al., 1997); (3) the diffusion 
regime only. 

Now, let us analyse the operation of the two hydrogen-elastic models (Curves 1 and 2). 
First of all, we should emphasise that both models give qualitatively close results. They 
mean one and the same tendency of hydrogen-elastic stress influencing the diffusion 
processes in metal-hydrogen systems. What is more, Curves 1 and 2 show a similar 
temperature dependence of hydrogen-elastic stress influencing the diffusion processes in 
metal-hydrogen systems. 

The computer calculations of a new model showed that as inhomogeneity sizes 
increase and the stresses appearing therewith increase too, the slowdown effect becomes 
much more stronger. At the same conditions, inhomogeneities that are 5 mm in diameter 
have τ increased by a factor of more than 10 (in comparison with the data for 
inhomogeneities with Rο = 1 mm). It is clearly seen in Figure 2 (Curve 1). 

In this very picture, a dependence of the maximum value of stresses (of all 
components) on an inhomogeneity radius (Curve 2) is shown. In Figure 2, one can see a 
determining importance of hydrogen-elastic stresses and their value for the diffusion 
processes in metal-hydrogen systems. In this respect, we should once again emphasise  
the most important feature of metal-hydrogen systems: their diffusion behaviour cannot 
be adequately understood only on the base of Fick’s law. Let us explain the thought in 
this way. 
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Figure 2 Dependence of a concentration inhomogeneity lifetime (1) and maximum stresses (2) 

on the inhomogeneity radius (T = 300 K, cο = 0.006)  

The calculations show that in the diffusion regime (Figure 1, Curve 3), only the 
temperature has a significant influence on the dissolving rate of inhomogeneities. As  
the hydrogen diffusion coefficient decreases with the decreasing temperature, then both 
the diffusion rate and inhomogeneity lifetime decrease. An inhomogeneity radius 
changing from 1 to 5 mm does not practically tell on the lifetime τ. Then, as in the case 
of stress influence on the diffusion process, the changes of a sphere radius from 1 to  
5 mm cause maximum stresses to increase by 44%. This results in the observed 
slowdown of the diffusion dissolving of the inhomogeneity: τ changes from 18 min for 
Rο = 1 mm to 250 min for Rο = 5 mm (Figure 2, Curve 1). 

We emphasise that at temperatures below 400 K, according to the model based on the 
isothermal hydrogen elasticity equations, a stronger effect of the slowdown is observed. 
We think that this can be explained in this way. The isothermal hydrogen elasticity 
equations, as the basis of a new behavioural model of concentration inhomogeneities 
presented in this paper, imply a possibility of ascending diffusion. This fundamental 
feature of MeH systems is not taken into account in the equations of hydrogen elasticity 
written by analogy with the equations of thermal elasticity. This implies that a new 
hydrogen-elastic model based on the isothermal hydrogen elasticity equations more fully 
reflects the peculiarities of the phenomenon of hydrogen elasticity and is adequate to the 
diffusion-cooperative nature of metal-hydrogen systems. 

3 Conclusion 

This paper summarises the current knowledge of the phenomenon of hydrogen elasticity 
in metal-hydrogen systems. The systems of the connected nonlinear differential equations 
are given, which are the basis of the mathematical modelling and computer calculations 
of specific developments of the hydrogen elasticity phenomenon. 

 

    
 
 

   

   
 

   

   

 

   

       
 



   

 

   

   
 

   

   

 

   

   342 Zh.L. Glukhova et al.     
 

On the basis of the system of the isothermal hydrogen elasticity equations, a 
mathematical model describing the behaviour of HC inhomogeneities in palladium and 
the basic regularities of their elastic-diffusion dissolution was developed. An analysis  
of the computer calculations showed that hydrogen-elastic stresses greatly slow down 
diffusion processes and the inhomogeneity lifetime essentially increases. The largest 
effect is observed at room temperatures. 

Comparison of the computer results obtained in this work and the ones obtained 
before (Goltsov et al., 1997) allowed us to conclude that the new hydrogen-elastic  
model based on the isothermal hydrogen elasticity equations more fully reflects the 
diffusion-cooperative nature of metal-hydrogen systems. 
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