ИССЛЕДОВАНИЕ ВЛИЯНИЯ КОНЦЕНТРАТОРА НАПРЯЖЕНИЙ НА ПРОЧНОСТЬ ВАЛА

Карандашев К.П., Матеко П.М. (ДонНТУ, г. Донецк, Украина)

При конструировании машин и механизмов большое внимание уделяется расчету отдельных деталей, таких как валы, зубчатые колеса и др. Расчет таких деталей на выносливость с определением коэффициента запаса прочности по общеинженерной методике связан с определенными трудностями. Методика определения коэффициента запаса прочности с помощью автоматизированной системы APM WinMachine позволяет значительно сократить время расчета и определить запас прочности в любой точке вала.

В качестве объекта исследования был принят выходной вал двухступенчатого цилиндрического редуктора. Исходные данные:

- 1. Крутящий момент на валу $T = 1.8 \cdot 10^6$ H · мм:
- 2. Частота вращения вала n=60 об/мин;
- 3. Срок службы вала L_h =10000 часов;
- 4. Параметры зубчатого колеса:
 - модуль нормальный $m_n = 5$ мм;
 - число зубьев Z=68;
 - угол наклона зубьев $\beta = 10^{\circ}15'$.

По известным формулам были определены силы, действующие на вал в зацеплении зубчатого колеса и сила от зубчатой муфты.

Окружная сила $F_t = 10,42 \cdot 10^3$ H; Радиальная сила $F_r = 3,85 \cdot 10^3$ H; Осевая сила $F_a = 1,87 \cdot 10^3$ H; Сила от зубчатой муфты $F_M = 6,66 \cdot 10^3$ H.

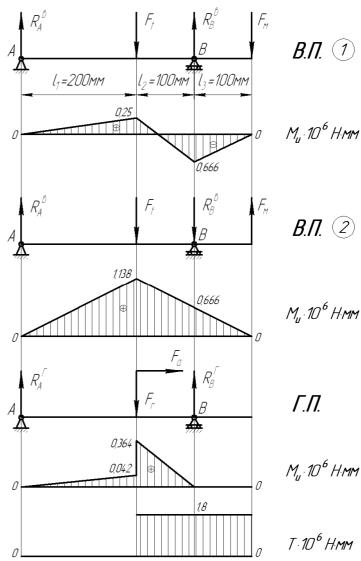


Рисунок 1 – Эпюры изгибающих и крутящего моментов

Рассматриваем вал как балку на двух опорах, нагруженную сосредоточенными силами от зубчатого колеса и муфты, приложенными в вертикальной горизонтальной

плоскостях. При этом силу от муфты рассматриваем в двух вариантах (направление вверх и вниз).

По общепринятой методике определены реакции в опорах и изгибающие моменты, построены эпюры изгибающих и крутящего моментов.

Рассматривая два варианта нагружения вала силами в вертикальной плоскости видим, что во втором варианте значение изгибающего момента больше чем в первом. К дальнейшему расчету принимаем второй вариант нагружения вала.

Из эпюры моментов видно, что опасное сечение вала находится под колесом. По этому сечению ведем дальнейший расчет вала. Суммарный изгибающий момент равен:

$$M_{u\Sigma} = \sqrt{{M_u^B}^2 + {M_u^\Gamma}^2} = \sqrt{(1{,}138 \cdot 10^6)^2 + (0{,}364 \cdot 10^6)^2} = 1{,}2 \cdot 10^6 \; \text{H} \cdot \text{mm} \; .$$

Эквивалентный момент:

$$M_{\, 9 \text{KG}} = \sqrt{M_{\, u \, \Sigma}^{\, 2} + T^{\, 2}} = \sqrt{(1, 2 \cdot 10^{\, 6})^{\, 2} + (1, 8 \cdot 10^{\, 6})^{\, 2}} = 2, 16 \cdot 10^{\, 6} \, \, \, \text{H} \cdot \text{MM} \, .$$

Для изготовления вала принимаем сталь 45 HB 170...200 (нормализация), с пределом выносливости при изгибе σ_{-1} = 280 МПа, с пределом выносливости при кручении τ_{-1} = 160 МПа.

Тогда допускаемые напряжения при изгибе равны:

$$\left[\sigma_{-1}\right]_{u} = \frac{\sigma_{-1} \cdot \varepsilon}{S_{\sigma} \cdot K_{\sigma}} = \frac{280 \cdot 0.71}{2 \cdot 1.9} = 52 \text{ M}\Pi\text{a},$$

где: ε =0,71-масштабный фактор;

 S_{σ} =2,0-коэффициент запаса прочности по нормальным напряжениям;

 $K_{\sigma} = 1,9$ -коэффициент концентрации напряжений.

Диаметр вала в опасном сечении равен:

$$d \ge 3\sqrt{\frac{M_{_{9K6}}}{0,1 \cdot [\sigma_{-1}]_u}} = 3\sqrt{\frac{2,16 \cdot 10^6}{0,1 \cdot 52}} = 74,6 \text{ mm}.$$

Принимаем диаметр вала под колесом $d=75\,\mathrm{mm}$; диаметр шипа $d_{uu}=65\,\mathrm{mm}$; диаметр выходного участка вала $d_{sblx}=60\,\mathrm{mm}$; диаметр буртика $d_{\delta}=90\,\mathrm{mm}$.

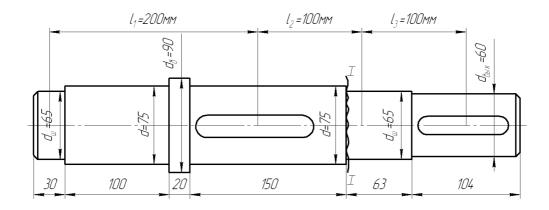


Рисунок 2 – Эскиз вала

Расчет вала на выносливость сводится к определению коэффициента запаса прочности в опасном сечении. (сечение I-I, рис.2)

Общий коэффициент запаса прочности по пределу выносливости равен:

$$S = \frac{S_{\sigma} \cdot S_{\tau}}{\sqrt{S_{\sigma}^2 + S_{\tau}^2}},$$

где S_{σ} и S_{τ} - коэффициенты запаса прочности по нормальным и касательным напряжениям:

$$S_{\sigma} = \frac{\sigma_{-1}}{\frac{(K_{\sigma})_d}{\varepsilon_{\sigma} \cdot \beta} \cdot \sigma_a + \psi_{\sigma} \cdot \sigma_{\scriptscriptstyle{M}}}; \quad S_{\tau} = \frac{\tau_{-1}}{\frac{(K_{\tau})_d}{\varepsilon_{\tau} \cdot \beta} \cdot \tau_a + \psi_{\tau} \cdot \tau_{\scriptscriptstyle{M}}},$$

где: σ_{-1} и τ_{-1} - пределы выносливости при изгибе и кручении;

 ε_{σ} и ε_{τ} - масштабный фактор;

 $(K_{\sigma})_d$ и $(K_{\tau})_d$ - коэффициенты концентрации напряжений;

 β - коэффициент, учитывающий поверхностное упрочнение;

 σ_a и τ_a - амплитудные составляющие напряжений изгиба и кручения;

 $\sigma_{_{M}}$ и $\tau_{_{M}}$ - постоянные составляющие напряжений изгиба и кручения.

Напряжения определялись по зависимостям:

$$\sigma_a = \frac{M_u}{W_{oc}}; \quad \sigma_{\scriptscriptstyle M} = 0; \quad \tau_a = \tau_{\scriptscriptstyle M} = \frac{\tau_{\scriptscriptstyle KP}}{2} = \frac{T}{2 \cdot W_p}.$$

Коэффициенты концентрации напряжений выбирались в зависимости от отношения диаметра вала к диаметру шипа

$$d/d_{uu} = 75/65 = 1,153$$
.

В дальнейшем запас прочности определялся при разных радиусах галтели (r = 0,5...3,0 мм, с интервалом 0,5 мм). Результаты расчетов приведены в табл. 1.

Радиус галтели <i>г</i> ,мм	Отношение r/d_u	K_{σ}	$K_{ au}$	S_{σ}	$S_{ au}$	S
0,5	0,008	3,04	1,75	2,40	3,95	2,05
1,0	0,015	2,73	1,65	2,68	4,2	2,26
1,5	0,023	2,43	1,56	3,01	4,44	2,49
2,0	0,030	2,24	1,49	3,27	4,64	2,67
2,5	0,038	2,12	1,41	3,62	4,73	2,87
3,0	0,046	1,81	1,33	4,04	5,12	3,17

Таблица 1 – Результаты расчетов

По полученным значениям S строим график зависимости коэффициента запаса прочности от радиуса галтели (рис. 3, кривая 1).

Определение коэффициента запаса прочности вала с помощью автоматизированной системы APM WinMachine выполнялось в модуле APM Shaft. Для этого был выполнен эскиз вала с его размерами по длине и диаметру. В соответствующих точках были приложены силы и моменты, действующие на вал. Для выбранного материала вала был выполнен расчет и получены результаты расчета.

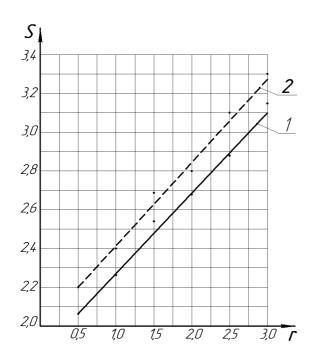


Рисунок 3 - График зависимости коэффициента запаса прочности от радиуса галтели

Результатами расчета являются: реакции в опорах, эпюры изгибающих и крутящего моментов, значение коэффициента запаса прочности по всей длине вала. Принимая радиус галтели $r=0,5...3,0\,$ мм, с интервалом $0,5\,$ мм получили зачения коэффициента запаса прочности (см. рис. 3, кривая 2).

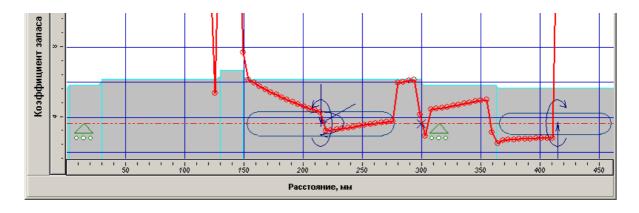


Рисунок 4 - Запас прочности S в APM WinMachine

Значения коэффициента запаса прочности посчитанные по общеинженерной методике и с помощью автоматизированной системы APM WinMachine отличаются незначительно. Это подтверждает правильность расчетов по этим методикам.

Список литературы: 1. Решетов Д.Н. Детали машин. М. Машиностроение, 1989, 497с **2.** Методические указания по курсовому проектированию деталей машин. Раздел 3. Расчет и конструирование валов. Донецк, ДПИ, 1981, 48 с.