МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ГОСУДАРСТВЕННОЕ ВЫСШЕЕ УЧЕБНОЕ ЗАВЕДЕНИЕ «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Добровольский Ю. Н., Ефименко К. Н.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

И ЗАДАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО КУРСУ «ИНФОРМАТИКА И ОСНОВЫ ПРОГРАММИРОВАНИЯ»

УДК 681.3.06 (071)

Методические указания и задания к лабораторным работам по курсу «Информатика и основы программирования»/ Ю.Н. Добровольский, К.Н. Ефименко, – Донецк: ГВУЗ «ДонНТУ», 2008. – 46 с.

Приведены примеры выполнения и задания к лабораторным работам по курсу «Информатика и основы программирования», который читается для студентов I курса специальностей ПТМ, ГПМ, ОПИ и МАШ (профессиональное направление – «Инженерная механика»).

Авторы: Ю.Н. Добровольский,

К.Н. Ефименко

Отв. за выпуск: В.Н. Павлыш, д.т.н., профессор.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ГОСУДАРСТВЕННОЕ ВЫСШЕЕ УЧЕБНОЕ ЗАВЕДЕНИЕ «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Добровольский Ю. Н., Ефименко К.Н.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

И ЗАДАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО КУРСУ «ИНФОРМАТИКА И ОСНОВЫ ПРОГРАММИРОВАНИЯ»

Рассмотрено на заседании кафедры ВМиП протокол № 9 от "04" апреля 2008 г.

Утверждено методической комиссией ДонНТУ протокол № 4 от "19" мая 2008 г.

СОДЕРЖАНИЕ

Лабораторная работа №1.	
Организация линейного и разветвляющегося вычислительных процессов	5
Лабораторная работа №2.	
Организация циклов с известным числом повторений	7
Лабораторная работа №3.	
Организация циклов с неизвестным числом повторений	10
Лабораторная работа №4.	
Организация вложенных циклов	12
Лабораторная работа №5.	
Организация итерационного процесса	15
Лабораторная работа №6.	
Обработка одномерных массивов	16
Лабораторная работа №7.	
Обработка одномерных массивов с перестановкой элементов	18
Лабораторная работа №8.	
Обработка двумерных массивов.	20
Залания к лабораторным работам	22

Лабораторная работа №1.

Организация линейного и разветвляющегося вычислительных процессов

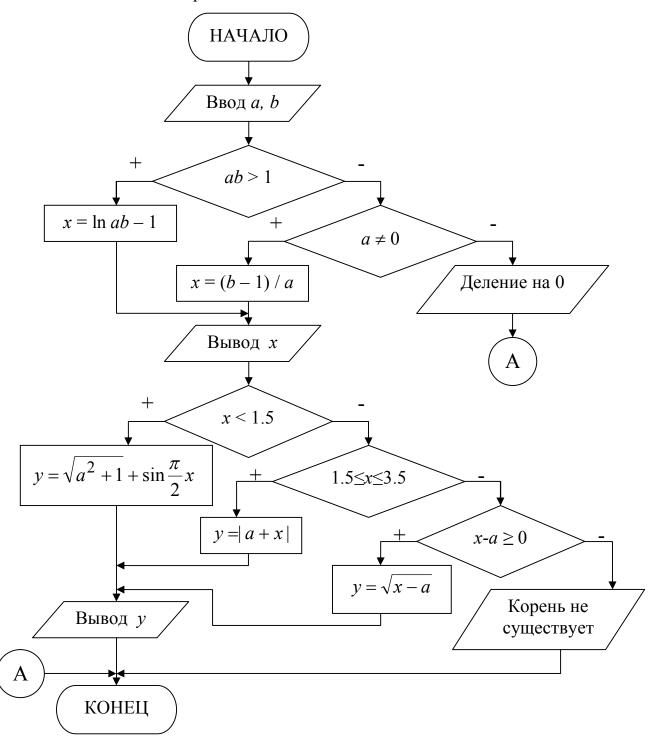
1. Основные теоретические положения

Алгоритм – это строгая последовательность арифметических и логических действий, которая однозначно определяет процесс вычисления результата в зависимости от исходных данных. Наиболее удобным и наглядным способом представления алгоритма является графический в виде блок-схемы. При этом каждый логически завершенный этап вычислительного процесса изображается в виде специального геометрического символа - блока. Блоки записываются последовательно друг за другом и соединяются линиями потока информации, которые показывают направление движения по блок-схеме. В общем случае любой алгоритм может состоять из трех частей: ввод исходных данных, вычисление требуемых величин и вывод полученных результатов.

В линейном вычислительном процессе все действия выполняются в строгой последовательности друг за другом. Таким образом, существует только один путь, по которому можно пройти из блока «Начало» в блок «Конец» алгоритма, т.е. выполнить алгоритм.

Разветвляющийся вычислительный процесс позволяет выбрать один из нескольких вариантов решения поставленной задачи в зависимости от выполнения некоторых условий. Таким образом, существует несколько различных путей, по которым можно пройти из блока «Начало» в блок «Конец» алгоритма, т.е. выполнить алгоритм.

2. Пример выполнения лабораторной работы


Задание. Составить блок-схему алгоритма и программу на VBA, которые в соответствии с исходными данными вычисляют значения заданных выражений.

- 1. Исходные данные: *a*, *b*
- 2. Математическая модель:

2. Математическая модель:
$$y = \begin{cases} \sqrt{a^2 + 1} + \sin \frac{\pi}{2} x, & \text{если } x < 1.5 \\ |a + x|, & \text{если } 1.5 \le x \le 3.5 \\ \sqrt{x - a}, & \text{если } x > 3.5 \end{cases} \qquad x = \begin{cases} \ln ab - 1, & \text{если } ab > 1 \\ \frac{b - 1}{a}, & \text{если } ab \le 1 \end{cases}$$

- 3. Ограничения:
- а) подкоренное выражение $a^2+1 \ge 0$, **не проверять**, т.к. a^2+1 всегда больше 0;
- б) подкоренное выражение $x a \ge 0$;
- в) выражение под знаком логарифма ab > 0, не проверять, т.к. это выражение для вычисления x используется только если ab > 1;
- г) знаменатель $a \neq 0$.
 - 4. Выходные данные: х, у

5. Блок-схема алгоритма:

6. Программа решения задачи на VBA. Для ввода исходных данных использовать оператор **InputBox**, для вывода результатов использовать оператор **MsgBox**.

Public Sub lab1()

Const Pi = 3.14159

Dim a As Single, b As Single, x As Single, y As Single

a = InputBox("Введите значение а", "Ввод исходных данных")

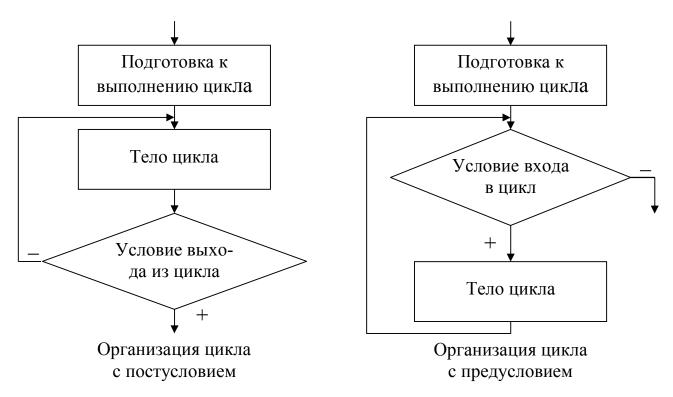
b = InputBox("Введите значение b", "Ввод исходных данных")

If a * b > 1 Then

```
x = Log(a * b) - 1
Else
If a \Leftrightarrow 0 Then
 x = (b - 1) / a
 MsgBox "Деление на 0", , "Ошибка!": GoTo m1
End If
End If
MsgBox "x = " & x, , "Результаты"
If x < 1.5 Then
y = Sqr(a^2 + 1) + Sin(Pi/2 * x)
Else
If x \ge 1.5 And x \le 3.5 Then
 y = Abs(a + x)
Else
 If x - a \ge 0 Then
 y = Sqr(x - a)
 Else
 MsgBox "Корень не существует", , "Ошибка!": GoTo m1
End If
End If
MsgBox "y = " & y, " Результаты"
m1:
End Sub
```

Лабораторная работа №2. Организация циклов с известным числом повторений

1. Основные теоретические положения


В алгоритмах циклической структуры выполнение одних и тех же действий может повторяться несколько раз. Этапы организации циклического вычислительного процесса:

- I **подготовка к выполнению цикла**: присваивание начальных значений параметру цикла и переменным, использующихся для хранения накапливающихся величин (сумма, количество или произведение вычисляемых величин).
- II **тело цикла**: арифметические и логические действия, которые могут повторяться определенное количество раз. В конце тела цикла обязательно должен быть блок, в котором изменяется значение параметра цикла.
- III **условие выхода из цикла**: проверяется надо ли повторять вычисления, или выходить из цикла.

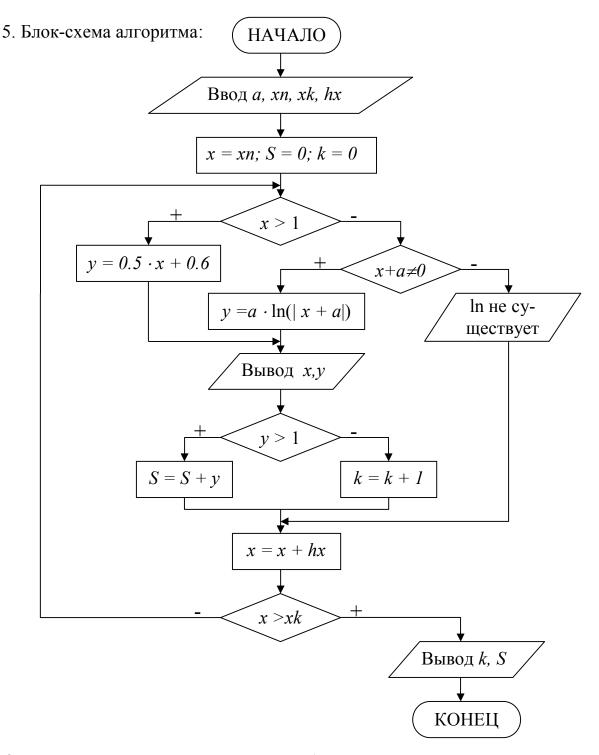
Параметр цикла – это переменная, на основе которой строится цикл. Она должна удовлетворять трем условиям: являться исходной величиной для выпол-

нения вычислений; изменяться по определенному закону (чаще всего это закон арифметической прогрессии); оказывать влияние на условие завершения повторяющихся вычислений.

Существует три основных типа циклов: **цикл с постусловием**, **цикл с пре- дусловием** и **цикл** «Для» на основе блока модификации.

В цикле с постусловием в отличие от цикла с предусловием, тело цикла всегда выполнится хотя бы один раз. Однократное выполнение тела цикла называется **шагом**. Циклические вычислительные процессы, для которых можно вычислить количество шагов цикла без выполнения алгоритма, называются **циклами с известным числом повторений**. Для реализации циклов с известным числом повторений можно равноценно использовать любой из трех стандартных типов цикла

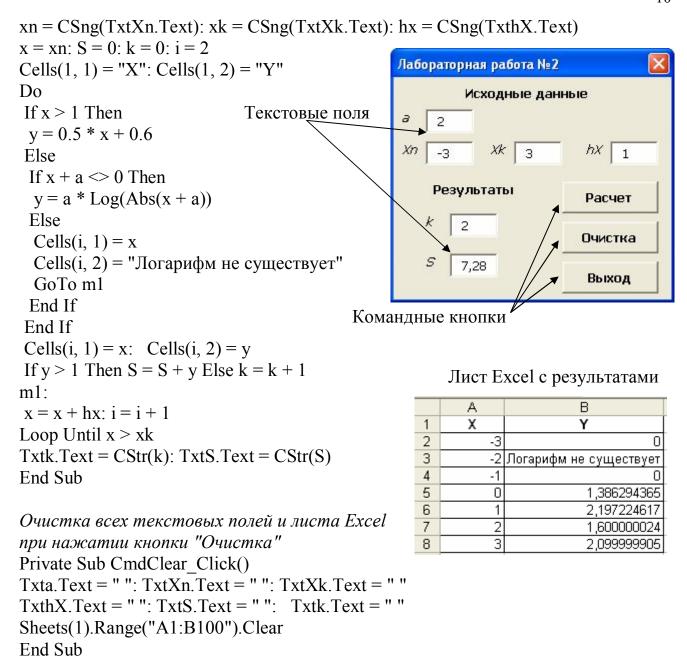
2. Пример выполнения лабораторной работы


Задание. Составить блок-схему алгоритма и программу на VBA для вычисления значений y при всех возможных значениях x, которые лежат в интервале от xn до xk с шагом hx. Использовать цикл с постусловием.

- 1. Исходные данные: *a, xn, xk, hx*
- 2. Математическая модель:

$$y = \begin{cases} 0.5x + 0.6, & ecnu \quad x > 1 \\ a \cdot \ln(|x + a|), & ecnu \quad x \le 1 \end{cases}$$

Вычислить S — сумму значений y > 1 и k — количество $y \le 1$.


- 3. Ограничения: выражение под знаком логарифма $x + a \neq 0$
- 4. Выходные данные: *x*, *y*, *S* и *k*.

6. Программа решения задачи на VBA. Для ввода исходных данных создать форму с соответствующими текстовыми полями и кнопками, управляющими работой программы. Величины (x, y), значения которых выводятся в теле цикла необходимо выводить на лист MS Excel в виде таблицы. Величины (k, S), значения которых выводятся вне тела цикла, необходимо выводить в соответствующие текстовые поля на форме.

Вычисление требуемых величин при нажатии кнопки "Pacчem" Private Sub CmdSolve_Click()
Dim a As Single, xn As Single, xk As Single, hx As Single
Dim x As Single, y As Single, S As Single, k As Integer

a = CSng(Txta.Text)

Завершение работы программы при нажатии кнопки "Выход" Private Sub CmdExit_Click() End End Sub

Лабораторная работа №3. Организация циклов с неизвестным числом повторений

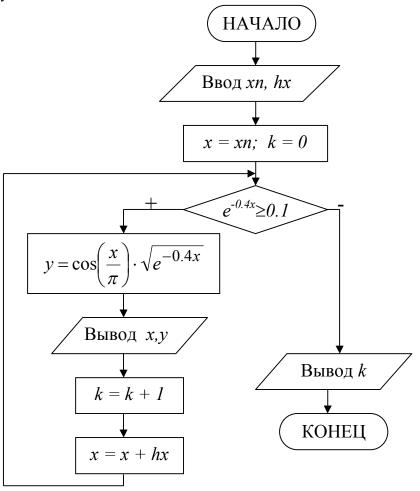
1. Основные теоретические положения

В циклах с неизвестным числом повторений невозможно заранее определить количество повторений вычислений. Поэтому вычислительный процесс завершается при выполнении некоторого дополнительного условия. Значения параметра цикла уже не задаётся в виде диапазона, а только указывается его на-

чальное значение и шаг изменения. Организация цикла выполняется по стандартной методике. При этом не любой тип циклического вычислительного процесса можно использовать. Тип цикла определяется в соответствии с заданным дополнительным условием завершения вычислений. Это однозначно исключает возможность использование цикла «Для» на основе блока модификации.

2. Пример выполнения лабораторной работы

Задание. Составить блок-схему алгоритма и программу на VBA для вычисления значений y при всех возможных значениях x, начинающихся с начального xn, и изменяющихся с шагом hx.


- 1. Исходные данные: xn > 0, hx = 0.6.
- 2. Математическая модель:

$$y = \cos\left(\frac{x}{\pi}\right) \cdot \sqrt{e^{-0.4x}}$$

Дополнительное условие завершения вычислений: вычислять y, пока подкоренное выражение больше 0.1.

Вычислить k – количество вычисленных у.

- 3. Ограничения: подкоренное выражение $e^{-0.4x} \ge 0$, не проверять, т.к. $e^{-0.4x}$ всегда больше 0.
 - 4. Выходные данные: *x*, *y*, *S* и *k*.
- 5. Блок-схема алгоритма. Для решения этой задачи можно использовать только цикл с предусловием, так как перед вычислением у необходимо проверять условие завершения вычислений.

6. Программа решения задачи на VBA. Рекомендации по составлению программы см. лабораторная работа №2.

Вычисление требуемых величин при нажатии кнопки "Расчет"

Private Sub CmdSolve_Click()

Const Pi = 3.14159

Dim xn As Single, hx As Single, i As Integer

Dim x As Single, y As Single, k As Integer

xn = CSng(TxtXn.Text)

hx = CSng(TxthX.Text)

x = xn: k = 0: i = 2

Cells(1, 1) = "X": Cells(1, 2) = "Y"

Do While Exp(-0.4 * x) >= 0.1

y = Cos(x / Pi) * Sqr(Exp(-0.4 * x))

Cells(i, 1) = x: Cells(i, 2) = y

k = k + 1

x = x + hx: i = i + 1

Loop

Txtk.Text = CStr(k)

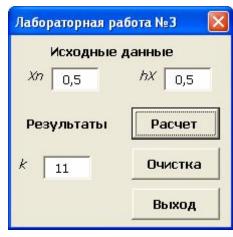
End Sub

Очистка всех текстовых полей и листа Excel при нажатии кнопки "Очистка"

Private Sub CmdClear Click()

TxtXn.Text = " ": TxthX.Text = " ": Txtk.Text = " "

Sheets(1).Range("A1:B100").Clear


End Sub

Завершение работы программы при нажатии кнопки "Выход"

Private Sub CmdExit Click()

End

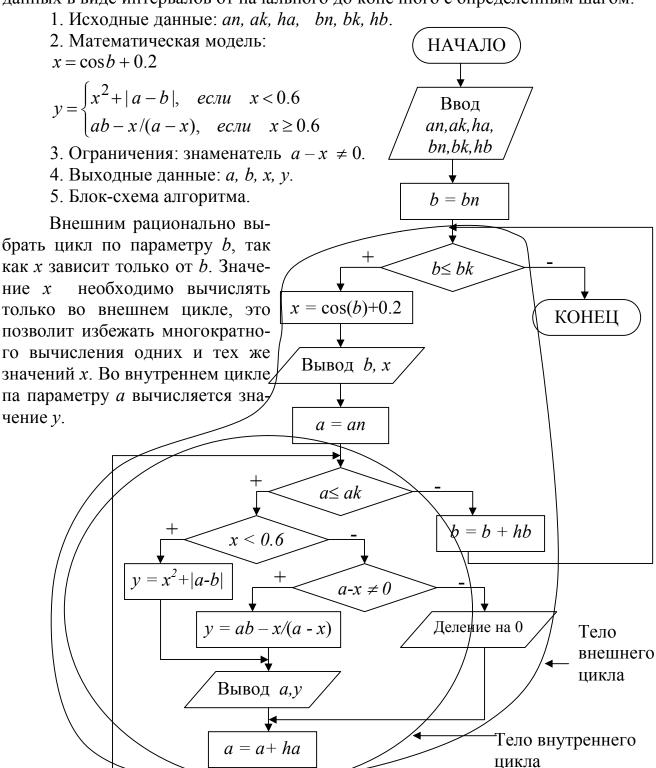
End Sub

Лист Excel с результатами

	Α	В			
1	Χ	Υ			
2	0,5	0,893401682			
3	1	0,777602315			
4	1,5	0,657967031			
5	2	0,539010704			
6	2,5	0,424408317			
7	3	0,317029566			
8	3,5	0,218993321			
9	4	0,131736159			
10	4,5	0,056090031			
11	5	-0,007634587			
12	5,5	-0,05956414			
13 Н → № Лист1 / Лист2 / Л					

Лабораторная работа №4. Организация вложенных циклов

1. Основные теоретические положения


Вложенные циклы выполняют перебор значений нескольких переменных одновременно. Каждый из них организовывается по стандартному принципу (может быть любого из трех типов) и осуществляет перебор только одного параметра. При этом первый цикл называется внешним, а вложенные в него — внутренними. Границы внутреннего цикла не могут выходить за границы внешнего по отношению к нему цикла.

Для каждого значения параметра внешнего цикла происходит перебор всех

возможных значений параметра внутреннего цикла. Всегда выполняется в первую очередь самый внутренний цикл. Такая организация циклов дает возможность перебрать значения их параметров во всех возможных комбинациях.

2. Пример выполнения лабораторной работы

Задание. Составить блок-схему алгоритма и программу на VBA для вычисления значений x и y при всех возможных комбинациях значений a и b, заданных в виде интервалов от начального до конечного с определенным шагом.

Описание глобальных переменных

Dim an As Single, ak As Single, ha As Single Dim bn As Single, bk As Single, hb As Single

Ввод исходных данных при нажатии кнопки "Ввод данных" Private Sub CmdInput Click()

an = InputBox("Введите значение an", "Ввод исходных данных")

ak = InputBox("Введите значение ak", "Ввод исходных данных")

ha = InputBox("Введите значение ha", "Ввод исходных данных")

bn = InputBox("Введите значение bn", "Ввод исходных данных")

bk = InputBox("Введите значение bk", "Ввод исходных данных")

hb = InputBox("Введите значение hb", "Ввод исходных данных") End Sub

Вычисление требуемых величин при нажатии кнопки "Расчет"

Private Sub CmdSolve Click()

Описание локальных переменных

Dim a As Single, b As Single, i As Integer

Dim x As Single, y As Single

b = bn: i = 2

Cells(1, 1) = "B": Cells(1, 2) = "X"

Cells(1, 3) = "A": Cells(1, 4) = "Y"

Do While $b \le bk$

x = Cos(b) + 0.2

Cells(i, 1) = b: Cells(i, 2) = x

a = an

Do While a <= ak

If x < 0.6 Then

 $y = x ^2 + Abs(a - b)$

Else

If a - x <> 0 Then

y = a * b - x / (a - x)

Else

Cells(i, 3) = a: Cells(i, 4) = "Деление на 0"

GoTo m1

End If

End If

Лист Excel с результатами

	Α	В	C	D
1	В	Х	Α	Υ
2	2	-0,21615	1	1,046719
3			2	0,046719
4			3	1,046719
5			4	2,04672
6	4	-0,45364	1	3,205792
7			2	2,205792
8			3	1,205793
9			4	0,205793
10	6	1,16017	1	13,24335
11			2	10,61856
12			3	17,36941
13			4	23,59146

Очистка листа Excel при нажатии кнопки "Очистка" Private Sub CmdClear_Click() Sheets(1).Range("A1:D100").Clear End Sub

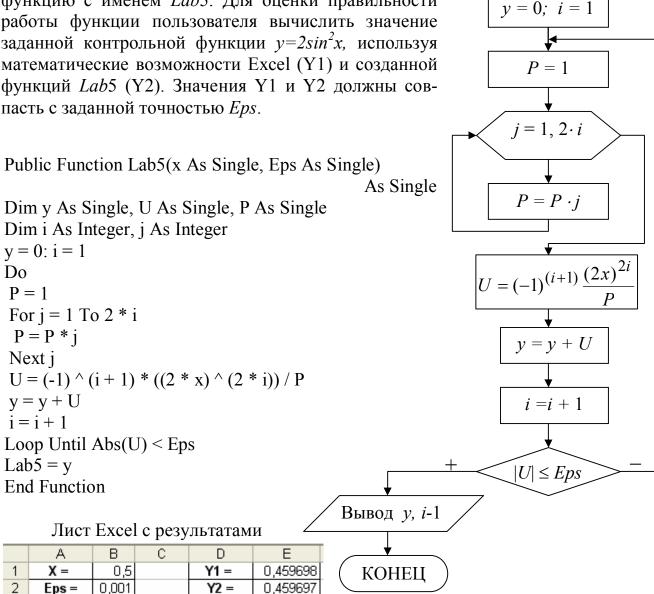
Лабораторная работа №5. Организация итерационного процесса

1. Основные теоретические положения

Цикл называется **итерационным**, если при каждом последующем выполнении цикла результат вычисления приближается к искомому с заданной точностью ε .

2. Пример выполнения лабораторной работы

Задание. Составить алгоритм и функцию пользователя для нахождения суммы ряда с заданной точностью Eps. Использовать рекуррентные соотношения при вычислении очередного члена ряда. Для оценки правильности результата предусмотреть вычисление по контрольной формуле. Вычисление суммы заканчивается, если модуль очередного слагаемого оказывается меньше заданного значения точности Eps.


- 1. Исходные данные: x = 0.5, Eps = 0.001.
- 2. Математическая модель: вычислить значение функции $y=2sin^2x$ (контрольная формула), как сумму ряда $y=\frac{(2x)^2}{2!}-\frac{(2x)^4}{4!}+\frac{(2x)^6}{6!}-...\pm\frac{(2x)^{2i}}{(2i)!}\mp...$ с заданной точностью вычислений Eps.
- 3. Рекуррентная формула: получаемое на i-ом шаге слагаемое (член ряда), вычисляется по формуле $S_i = (-1)^{(i+1)} \frac{(2x)^{2i}}{(2i)!}$.
 - 4. Выходные данные: у, количество слагаемых в сумме ряда.
- 5. Блок-схема алгоритма. Обозначим вычисляемый на i-ом шаге член ряда, как U. При решении задачи рационально использовать цикл с постусловием, т.е. вначале вычислить значение U, а затем проверит условие выхода из цикла $|U| \le Eps$. Значение факториала P = (2i)! вычисляется с помощью вложенного цик-

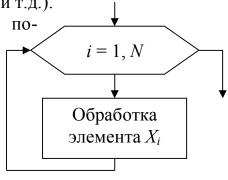
НАЧАЛО

Bвод x, Eps

ла «Для» на основе блока модификации.

6. Программа решения задачи на VBA. Для создания функции пользователя, с помощью команды Вставка Модуль, добавить в проект модуль. Командой Вставка → Процедура добавить в модуль функцию с именем Lab5. Для оценки правильности работы функции пользователя вычислить значение заданной контрольной функции $y=2\sin^2 x$, используя математические возможности Excel (Y1) и созданной функций Lab5 (Y2). Значения Y1 и Y2 должны совпасть с заданной точностью Ерѕ.

Лабораторная работа №6. Обработка одномерных массивов

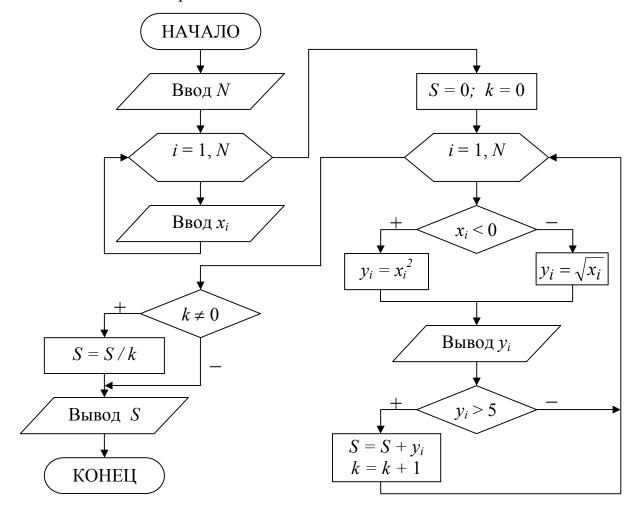

1. Основные теоретические положения

Массив – это последовательность однотипных элементов, каждый из которых имеет одно и тоже имя, но однозначно определяется своим номером (индексом). В одномерном массиве каждый элемент имеет один индекс, определяющий положение элемента в массиве.

Основными характеристиками массива являются:

- размерность, т.е. количество элементов (обычно обозначается N);
- значения элементов (например, $X_1 = 2$; $X_3 = 1$ и т.д.).

Обработка массива обычно заключается в последовательном переборе его элементов и выполнении над ними однотипных операций, т.е. обработка массива является циклическим вычислительным процессом. Для этого достаточно организовать цикл по перебору индексов элементов массива. Наиболее рационально использовать цикл «Для» на основе блока модификации.


2. Пример выполнения лабораторной работы

Задание. Составить блок-схему алгоритма и программу на VBA, которая на основе элементов исходного массива X, вычисляет элементы массива Y.

- 1. Исходные данные: массив X, размерностью $i = 1 \div N$.
- 2. Математическая модель: $y_i = \begin{cases} x_i^2, \text{ если } x_i < 0 \\ \sqrt{x_i}, \text{ если } x_i \geq 0 \end{cases}$

Вычислить S — среднее арифметическое значение элементов массива $y_i > 5$.

- 3. Выходные данные: массив Y, S.
- 4. Блок-схема алгоритма:

5. Программа решения задачи на VBA. Исходные данные (размерность и значения элементов массива X) вводятся с листа Excel. Результаты (значения элементов массива Y и среднее арифметическое S) выводятся на лист Excel.

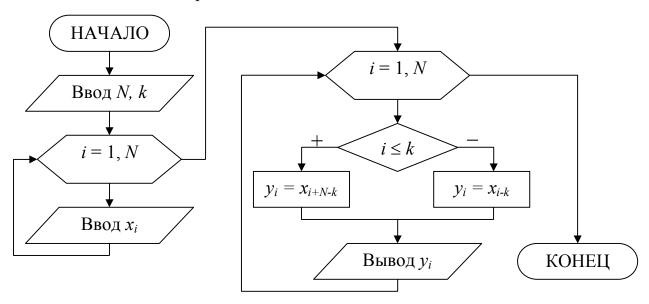
Public Sub Lab6() Else Dim x(10) As Single, y(10) As Single y(i) = Sqr(x(i))Dim S As Single, k As Integer End If Dim i As Integer, N As Integer Cells(5, i) = y(i)N = Cells(1, 2)If y(i) > 5 Then S = S + v(i)For i = 1 To N k = k + 1x(i) = Cells(3, i)Next i End If S = 0: k = 0Next i Cells(4, 1) = "Массив Y" If $k \ll 0$ Then S = S / kFor i = 1 To N Cells(6, 1) = "S="Cells(6, 2) = SIf x(i) < 0 Then $y(i) = x(i) ^2$ End Sub

Лист Excel с результатами

	Α	В	С	D	Е	F	G
1	N =	7					
2	Массив	Χ					
3	4	-3	0	16	-2	9	36
4	Массив	Υ					
5	2	9	0	4	4	3	6
6	S=	7,5					

Лабораторная работа №7. Обработка одномерных массивов с перестановкой элементов

1. Основные теоретические положения


При формировании массива Y путем перестановки элементов исходного массива X, можно ввести дополнительную переменную k, которая будет использоваться для хранения номера текущего элемента массива Y, вычисляемого на основе номера соответствующего элемента массива X. Например, если необходимо записать элементы массива X в обратном порядке в массив Y, то соотношение между индексами элементов массивов X и Y, при переборе элементов, должно быть следующим $Y_i = X_{N-i+1}$ (вводить переменную k необязательно).

2. Пример выполнения лабораторной работы

Задание. Составить блок-схему алгоритма и программу на VBA, которая на основе элементов исходного массива X, формирует массив Y.

- 1. Исходные данные: массив X, размерностью $i = 1 \div N$.
- 2. Постановка задачи: Записать элементы массива $X=(x_1,x_2,...,x_N)$ в массив $Y=(y_1,y_2,...,y_N)$, сдвинув элементы массива X вправо на k позиций. При этом k элементов из конца массива X перемещаются в начало массива Y, т.е. $(y_1,y_2,...,y_N)=(x_{N-k+1},...,x_{N-1},x_N,x_1,x_2,...,x_{N-k})$.

- 3. Выходные данные: массив У.
- 4. Блок-схема алгоритма:

5. Программа решения задачи на VBA. Рекомендации по составлению программы см. лабораторная работа №6.

Public Sub Lab7() Dim x(10) As Single, y(10) As Single Dim i As Integer, N As Integer N = Cells(1, 2)k = Cells(1, 5)For i = 1 To N x(i) = Cells(3, i)Next i Cells(4, 1) = "Массив Y" For i = 1 To N If $x(i) \le k$ Then y(i) = x(i + N - k)Else y(i) = x(i - k)End If Cells(5, i) = y(i)Next i End Sub

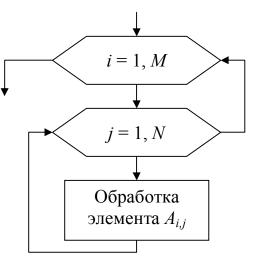
Лист Excel с результатами

	Α	В	С	D	E	F	G	Н		J
1	N =	10		k =	3					
2	Массив	×Χ								
3	1	2	3	4	5	6	7	8	9	10
4	Массив	: Y								
5	8	9	10	1	2	3	4	5	6	7
_										

Лабораторная работа №8. Обработка двумерных массивов

1. Основные теоретические положения

Двумерный массив (матрица) представляет собой таблицу, на пересечении строк и столбцов которой располагаются элементы. Каждый элемент имеет два

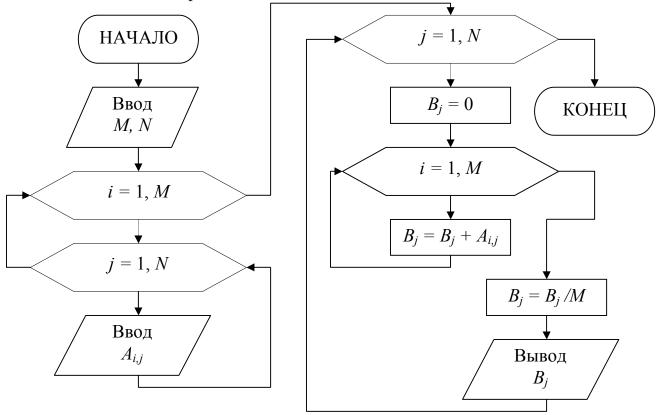

индекса. Первый индекс обозначается буквой i и указывает номер строки, в которой расположен элемент. Второй индекс обозначается буквой j и указывает номер столбца, в котором расположен элемент. Размерность двумерного массива задается двумя числами: M — количество строк и N — количество столбцов.

Двумерный массив, у которого количество строк равно количеству столбцов называется квадратной матрицей, в противном случае — прямоугольной.

	<i>j</i> =1	j=2	j=3	•••	j=N
i=1	$A_{1,1}$	$A_{1,2}$	$A_{1,2}$	•••	$A_{1,N}$
i=2					
	•••	•••	•••	$A_{i,j}$	•••
i=M	$A_{M,1}$	$A_{M,2}$	$A_{M,3}$	•••	$A_{M,N}$

Для обработки двумерного массива требуется два вложенных цикла «Для»

на основе блока модификации. Первый цикл будет перебирать строки, второй — столбцы массива. Внешний цикл при i =1 «выбирает» 1-ю строку массива. Внутренний цикл перебирает все столбцы массива, т.е. поочередно выбираются элементы $A_{1,1}$, $A_{1,2}$, $A_{1,3}$ и т.д. до конца 1-й строки. После выхода из внутреннего цикла происходит возврат во внешний бок модификации, где выбирается 2-я строка массива, для которой внутренний цикл опять переберет поочередно все элементы $A_{2,1}$, $A_{2,2}$, $A_{2,3}$ и т.д. Таким образом, элементы двумерного массива будут переби-


раться по строкам. Если поменять местами параметры внешнего и внутреннего циклов, т.е. внешний цикл сделать по параметру \mathbf{j} , а внутренний — по параметру \mathbf{i} , то элементы массива будут перебираться по столбцам.

2. Пример выполнения лабораторной работы

Задание. Составить блок-схему алгоритма и программу на VBA решения поставленной задачи обработки двумерного массива.

- 1. Исходные данные: двумерный массив A, размерностью $i = 1 \div M, j = 1 \div N$.
- 2. Постановка задачи: сформировать одномерный массив $B = (b_1, b_2, ..., b_N)$, каждый элемент которого равен среднему арифметическому значению элементов соответствующего столбца двумерного массива A.

- 3. Выходные данные: массив B.
- 4. Блок-схема алгоритма:

5. Программа решения задачи на VBA. Рекомендации по составлению программы см. лабораторная работа №6.

Public Sub Lab8()

Dim A(10, 10) As Single, B(10) As Single

Dim M As Integer, N As Integer

Dim i As Integer, j As Integer

M = Cells(1, 2)

N = Cells(1, 5)

For i = 1 To M

For j = 1 To N

A(i, j) = Cells(i + 2, j)

Next j

Next i

Cells(M + 4, 1) = "Массив В"

For j = 1 To N

B(j) = 0

For i = 1 To M

B(j) = B(j) + A(i, j)

Next i

B(j) = B(j) / M

Cells(M + 5, j) = B(j)

Next j

End Sub

Лист Excel с результатами

	Α	В	С	D	E
1	M =	4		N =	5
2	Массив	Α			
3	5	0	6	0	7
4	2	8	-4	8	-2
5	6	-4	3	5	11
6	1	2	-1	-j3	6
7					
8	Массив	В			
9	3,5	1,5	1	2,5	5,5
40					

Задания к лабораторным работам

	вариант №1	**	ъ
Л.р.	Модель	Исходные	Выводимые
No		данные	данные
1	$\int ax + b$, $ecnu x > 10 - b^2$	a = 3.2	<i>x</i> , <i>y</i> .
		b = 2.3	
	$y = \begin{cases} ax - c , & ecnu \ x = 10 - b^2 \\ c/x, & ecnu \ x < 10 - b^2 \end{cases}$	c = 4.5	
	10.12		
	$(c/x, ecnu x < 10-b^2)$		
	$\left(a^{2}/b^{2}\right)$ corn $a \neq b$		
	$x = \begin{cases} a^2/b^2, ecnu \ a \neq b \\ a+b, ecnu \ a = b \end{cases}$		
	$(a+b, ec \pi u a=b)$		
2	$\left[2x^3+3,ec\pi u x\geq 5\right]$	$0 \le x \le 10$	Z, x .
	$Z = \begin{cases} 7x + 6, & ecnu \ 1 \le x < 5 \end{cases}$	hx=1	Количество
	$L = \begin{cases} 7x + 0, & \text{cent } 1 \le x < 3 \end{cases}$		$Z \in [-1;1].$
	$\left -2/x^3, ecnu \right x < 1$		Сумма
			$Z \notin [-1;1].$
3	Γ 1.02 q 1	$q \leq 3$	<i>F</i> , <i>q</i> .
	$F = \sqrt{1 + 0.2 \frac{q}{2a^2 - 1} - \frac{1}{a + 1}}$	hq = -0.2	Количество
	V -4 1		вычислен-
	Считать F до тех пор, пока подкоренное выражение >0 .		ных F.
4			
•	$e^{\sin x}$, $e^{\cos x} = e^{\sin x}$	<i>x</i> ,	
	$y = \left\{ \left(x^2 - a \right) \sin x, e c \pi u \ a^2 x = b^3 \right\}$	$1 \le a \le 2$;	1
	$y - (x - a)\sin x$, echu $a - x - b$	ha=0.1	a,b,y
	$tg^2 4.5x$, $ecnu a^2 x > b^3$	$ \begin{array}{c} -3 \le b \le l, \\ hb=1 \end{array} $	
			1
5	$x - \frac{2}{6}x^2 + \frac{2 \cdot 5}{6 \cdot 9}x^3 - \dots \pm \frac{2 \cdot 5 \cdot \dots \cdot (3i - 4)}{6 \cdot 9 \cdot \dots \cdot 3i}x^i \mp \dots$	-	иая формула —
	$6 6 \cdot 9 6 \cdot 9 \cdot \dots \cdot 3i$	$3\sqrt[3]{1}$	ı
6	$\begin{cases} 25x_i + 2, & ec\pi u \ 2 < x_i \le 25 \end{cases}$		Массив Ү
	$v_{\cdot} = \begin{cases} 5\cos^2 x & ec\pi u \\ \end{cases} x_{\cdot} > 25$	$i = 1 \div N$	
	$y_i = \begin{cases} 5\cos^2 x_i, & ecnu \ x_i > 25 \\ 1/x_i^3, & ecman_{bhoin} & choose \end{cases}$		
	$(1/x_i^3$, в остальных случаях		
	Значение наибольшего отрицательного эле-		
	мента массива Ү		
7	Записать положительные элементы	Mассив X	Массив Ү.
	массива $X=(x_1,x_2,,x_N)$ подряд в массив		k, S
	$Y=(y_1,y_2,,y_k)$. Определить (k) - количество		
	положительных элементов. Вычислить		
	$S = \sum_{i=1}^{k} x_i$		
	$S = \sum_{i=1}^{n} y_i$		
8	i=1 Определить номера строки и столбца максил	Mankuasa ami	11111111111111111111111111111111111111
O	элемента прямоугольной матрицы $A = (a_{i,i})_{M,N.}$	палоного отр	лиципислоносо
	элеменни прямоуголоной митрицы $A = (a_{i,j})_{M,N}$		

Л.р.	Модель	Исходные	Выводимые
$N_{\underline{0}}$		данные	данные
1	$x-c$, если $x \le a$	a=1.2	<i>x</i> , <i>c</i> , <i>y</i> .
	$y = \begin{cases} x + c, & ec\pi u \ a < x \le b \end{cases}$	b=3.1	
	$y = \begin{cases} x + c, & ecnu \ a < x \le b \\ x/c, & ecnu \ x > b \end{cases}$		
	$c = \begin{cases} a/x + b, & ecnu \ x < 2 \\ a + bx, & ecnu \ x \ge 2 \end{cases} x = \sqrt{a^2 + b^2}$		
2	$y = \begin{cases} 2\sin^2 x + e^{-x}, ecnu \ x > 0 \\ tg \ x, ecnu \ x \le 0 \end{cases}$	$-3 \le x \le 3$ $hx = 0.1$	<i>x</i> , <i>y</i> .
	Сумма и количество отрицательных значений у.		
3	$y = 7.35a + \sqrt{0.2 \frac{a^3}{2a^2 - 1}}; S = \sum y$	$a \le 7$ $ha = -0.5$	у, а, S. Количество вычислен-
	Считать у до тех пор, пока выражение под знаком корня > 1 .		ных у.
4	$z = \begin{cases} ax - \frac{\sqrt{ax}}{0.2x + 0.5a}, & ecnu \\ 2a + x^2 + 0.7, & ecnu \\ x = \frac{b}{a + 0.1} \end{cases}$	$0.6 \le a \le 1.2$ $-0.3 \le b \le 1.2$ ha = 0.2; hb = 0.3	a, bx, z,
5			uga di annung
5	$x^{2}\left(\frac{1}{1!} + \frac{1}{1!}\right) - x^{4}\left(\frac{1}{2!} + \frac{1}{3!}\right) + \dots \pm x^{2i}\left(\frac{1}{i!} + \frac{1}{(2i-1)!}\right) \mp \dots$	-	иая формула $-e^{-x^2} + 1$
6	$\left[y_i - 0.3 \frac{y_i^2}{y_i + 1}, ecnu \ y_i > 1 \right]$	$Maccue\ Y$ $i=1\div N$	Массив Z.
	$z_i = \begin{cases} 0.5\cos\pi y_i, & ec\pi u \mid y_i \leq 1 \end{cases}$		
	$2\sin(\cos\pi/2y_i),\ ecnu\ y_i<-1$		
	Максимальный элемент Z_{max} и номера элементов массива Z меньших $0.5 \cdot Z_{max}$		
7	Записать элементы массива $A = (a_1, a_2,, a_N)$ с четными индексами подряд в массив	Массив А	<i>Массив В. k, P</i>
	$B=(b_1,b_2,,b_k)$. (k)-количество четных эле-		10, 1
	ментов. Вычислить $P = \prod_{y=1}^k b_i$		
8	В матрице $A = (a_{i,j})_{M,N}$ поменять местами 1-ю и следнюю и т.д. строки местами.	последнюю, .	2-ю и предпо-

_	Вариант №3		.
Л.р.	Модель	Исходные	Выводимые
$N_{\underline{0}}$		данные	данные
1	$\int x^3 + 3$, $ecnu \ x > 3$	a=1.7 b=2.4	<i>x</i> , <i>y</i> .
	$y = \begin{cases} x^3 - 3, & ecnu \ x < 3 \end{cases}$	o 2 .7	
	$y = \begin{cases} x^3 - 3, & ec\pi u \ x < 3 \\ ab/x, & ec\pi u \ x = 3 \end{cases}$		
	$x = \begin{cases} (a+1)/(b-1), & ecnu \ a < b \\ (a-1)(b+1), & ecnu \ a \ge b \end{cases}$		
	$(a-1)(b+1)$, если $a \ge b$		
2	$y = \begin{cases} 2\sin^2 x + x^2, & ecnu \ x > 0 \\ x^2 - 1/x, & ecnu \ x \le 0 \end{cases}$	$-2 \le x \le 2$ $hx = 0.2$	x, y.
	$\int_{0}^{\infty} \int_{0}^{\infty} x^{2} - 1/x, ecnu x \leq 0$	nx-0.2	
	Среднеарифметическое положительных зна-		
2	<u>чений у.</u>	b 1	E C
3	$F = b^2 \sqrt{0.1 + x^2} + \frac{3}{b\sqrt{0.1 + x}}$ $S = \sum F$	<i>b</i> , <i>A</i> , <i>x</i> ≥0	х, F, S. Количество
	• • • • • • • • • • • • • • • • • • • •	hx=0.5	слагаемых в
	Cчитать F до тех пор, пока значение F не	nx = 0.5	сумме.
	превышает А.		cymme.
4	$z = \begin{cases} y^2 + \frac{a + y^2}{ay}, ecnu \ y \ge 1 \\ y/a + \sqrt{a + 3y}, ecnu \ y < 1 \end{cases} y = \frac{x + a}{2x}$	$3 \le a \le 6$	
	$z = \begin{cases} y^{-} + \frac{1}{ay}, ecnu \ y \ge 1 \end{cases}$ $v = \frac{x+a}{ay}$	ha = 1	a, x, y, z
	$\begin{bmatrix} - & & & & \\ & & & & \\ & & & & \end{bmatrix}$ $\begin{bmatrix} 2x & & \\ & & & \end{bmatrix}$	$0.2 \le x \le 1$	a, x, y, 2
	$y/a + \sqrt{a+3y}$, ecnu $y<1$	hx=0.2	
5	$\frac{x(2+x)}{2!} - \frac{x^3(4+x)}{4!} + \frac{x^5(6+x)}{6!} - \dots \pm \frac{x^{2i-1}(2i+x)}{(2i)!} \mp \dots$		иая формула $\cos(x)+1$
6	$z = 2\sin^2 \frac{\pi}{2}$ $x + 2.5x^3$		Массивы Z,
	$z_i = 2\sin^2\frac{\pi}{3}x_i + 3.5x_i^3$	$0 \le x_i \le 1.2$	<i>Y</i> .
	$y_{i} = \begin{cases} z_{i} + z_{i} , ecnu & z_{i} < -1 \\ 1 + e^{-z_{i}}, ecnu & z_{i} > 3 \\ \cos z_{i} + z_{i}^{2}, ecnu & -1 \leq z_{i} \leq 3 \end{cases}$	$hx_i = 0.2$	Сумма и ко-
	$\begin{array}{c} \begin{array}{c} \cdot \\ 1 \\ \end{array}$		личество
	$y_i = \begin{cases} 1 + e^{-\tau}, & ecnu \ z_i > 3 \end{cases}$		положи-
	$\left(\cos z_i + z_i^2, ecnu - 1 \le z_i \le 3\right)$		тельных
			элементов
			массива Ү.
7	Zamicami nami nanativ nanatawani wa ana	<i>Массив Х</i>	Массив Ү.
'	Записать пять первых положительных эле-	Muccus A	S Maccus 1.
	ментов массива $X=(x_1,,x_N)$ подряд в массив		S
	$Y=(y_1,y_2,,y_5)$. Вычислить $S=\sum_{i=1}^3 y_i$		
8	$C \phi$ ормировать вектор $D = (d_1, d_2, d_M)$, каждый	й элемент ко	торого равен
	среднему арифметическому значений элемент		
	мерностью $M \times N$.	1	1

	Вариант №4	TT	Ъ
Л.р.	Модель	Исходные	Выводимые
№		данные	данные
1	$x - ab$, $ec\pi u x < 4$	a=3.5 b=4.7	<i>x</i> , <i>y</i> .
	$y = \left\{ x + ab, ecnu \right. 4 \le x \le 5$	<i>D</i> -4./	
	$y = \begin{cases} x + ab, & ecnu \ 4 \le x \le 5 \\ (x + a)/b, & ecnu \ x > 5 \end{cases}$		
	$x = \begin{cases} (a+b)/b, & ecnu \ a < b \\ a-b, & ecnu \ a \ge b \end{cases}$		
	$(a-b, ecnu a \ge b)$		
2	$\left(-4, \qquad ecnu x \leq -1\right)$	$3 \le x \le 5$	<i>F</i> , <i>x</i> . <i>Сумма</i> ,
	$F = \begin{cases} x^2 + 3/x + 4, ecnu - 1 < x < 1\\ (x+4)^2, ecnu & x \ge 1 \end{cases}$	hx = 0.1	количество положи-
	$\left[(x+4)^2, ecnu x \ge 1 \right]$		тельных значений F.
3	$F=2.72y+Z^2sin(x+y)$ $x=a^2-\sqrt{a}$	a, n,	x, y, F, Z.
		$Z \ge 0.4$	Количество
	$y = \left\{ \frac{x^{n+1}}{n+1}, ecnu \ n \neq -1 \right\}$	hz=0.5	вычислен-
	$\ln x$, $ecnu n = -1$		Hых F .
	Считать F до тех пор, пока F остаётся		
	меньше 100.		
4	$\int x^2$	$1.2 \le c \le 2$	
	$z = \begin{cases} \frac{x^2}{x+a} + \sqrt{x}, ecnu \ a \ge 1 \\ a = \sqrt{2x^2 + 0.2c} \end{cases}$	$0.2 \le x \le 2.2$	c, x, a, z
	$\sqrt{ax} + 3x$, $ecnu \ a < 1$	hc = 0.2; hx = 0.4	
5			цая формула
	$\frac{1}{4}x - \frac{1 \cdot 5}{4 \cdot 8}x^{2} + \frac{1 \cdot 5 \cdot 9}{4 \cdot 8 \cdot 12}x^{3} - \dots \pm \frac{1 \cdot 5 \cdot 9 \dots (4i - 3)}{4 \cdot 8 \cdot 12 \cdot \dots \cdot 4i}x^{i} \mp \dots$	1	1
		$1-\frac{4}{\sqrt[4]{}}$	$\sqrt{1+x}$
6	$y_i = \sin^2 x_i + \sqrt{1 + \cos^2 x_i^2}$		Массивы Z,
		$i=1\div N$	<i>Y</i> .
	$z_{i} = \begin{cases} \ln(\cos^{2}\frac{\pi}{4}x_{i} + 0.01), ecnu \mid y_{i} \mid > x_{i}^{2} \\ 1 + x_{i} - x_{i}^{2}, ecnu \mid y_{i} \mid \leq x_{i}^{2} \end{cases}$		
	$\left 1 + x_i - x_i^2, ecnu \mid y_i \mid \le x_i^2 \right $		
	Порядковый номер и значение первого по-		
	ложительного числа в массиве Z.		
7	Записать элементы массива $X=(x_1,x_2,,x_N)$,	Mассив X	Массив Ү.
	удовлетворяющее условию $x_i \in [1,2]$, подряд в массив $Y=(y_1,y_2,,y_k)$. Определить (κ) -		$\left \begin{array}{c} k, P \\ k \end{array} \right $
	массив $1-(y_1,y_2,,y_k)$. Определить (к)- количество таких элементов.		$P = \prod_{i=1}^{k} y_i$
8	B матрице $C = (c_{i,j})_{K,L}$ заменить каждый элеме	ит столбиа п	роизведением
	последующих элементов этого столбца.		

Л.р.	Бариант №5 Модель	Исходные	Выводимые
No		данные	данные
1	$a + cx$, $ec\pi u x < 1$	a = 2.5	<i>x</i> , <i>y</i> .
	$v = \begin{cases} b + d / x, & ec\pi u \ 1 \le x < 3 \end{cases}$	b = 1.3	
	$y = \begin{cases} b + d / x, & ecnu \ 1 \le x < 3 \\ c - ax, & ecnu \ x \ge 3 \end{cases}$	c=1.5	
		d=2.3	
	$x = \begin{cases} \sqrt{ab}, ecnu & ab \ge cd \\ \sqrt[3]{cd}, ecnu & ab < cd \end{cases}$		
	$\sqrt[3]{cd}$, если $ab < cd$		
2	$\int 5, ecnu x > 0$	$-2 \le x \le 2$	<i>x, N, F</i>
	$F=N!$ $N=\{7, ecnu \ x=0\}$	hx=1	
	$10, ecлu \ x < 0$		
3	$1.5t^2$	c,a	t, Z, f, b, P.
	$f = t^{3} \ln Z + 1 \qquad Z = \begin{cases} \frac{1.5t^{2}}{2a} + c, t \le 3\\ 6.5t + c, t > 3 \end{cases}$		Количество
	6.5t + c, t > 3	$b \leq 2$	вычисленных
	$t = \sin^2 a + \sqrt[3]{a}, P = 0.345 + \ln(f + b^3)$	hb = -0.2	<i>P</i> .
	C читать P , пока $(f+b^3)>0$.		
4		1.4\leq b\leq 2.6	
	$z = \begin{cases} \frac{px - 5}{bx + 0.5} - \sqrt{bx + 5}, ecnu \ bx \ge 5\\ \frac{2p^{2}}{x^{2} + 3} + \sqrt{5 + 2bx}, ecnu \ bx < 5 \end{cases}$	hb = 0.3;	
	$z = \begin{cases} 2n + 6,3 \\ 2n^2 \end{cases}$ $x = 3k + 2$	p = 0.4	b, k, x, z
	$\frac{2p}{2} + \sqrt{5 + 2bx}$, если $bx < 5$	$1 \le k \le 7$;	
		hk = 3	
5	$\frac{3x^2}{4!} - \frac{5x^4}{6!} + \frac{7x^6}{8!} - \frac{9x^8}{10!} + \dots \pm \frac{(2i+1)x^{2i}}{(2i+2)!} \mp \dots$		ьная формула
	4! $6!$ $8!$ $10!$ $(2i+2)!$		$\frac{-x\sin(x)}{2} + 0.5$
6	$(r \sin \pi r)$	<u>Массив X</u>	Массив У до
	$y_{i} = \begin{cases} \frac{\sqrt{x_{i}} \sin \pi x_{i}}{x_{i} + e^{x_{i}}}, & ecnu \ x_{i} > 1,5 \\ 2x_{i} + \sqrt{e^{x_{i}}}, & ecnu \ x_{i} \leq 1,5 \end{cases}$	$i = 1 \div N$	
	$\left \begin{array}{c} \left\langle x_i + e^{x_i} \right\rangle \\ - \end{array} \right $		ны. Среднее
	$2x_i + \sqrt{e^{X_i}}$, если $x_i \le 1.5$		арифметиче-
			ское массива
	Все отрицательные элементы массива Ү		Y до и после замены.
	заменить нулями, а нулевые элементы заме-		Samonoi.
	нить значением элемента x_i	11 17	14 17
7	Записать элементы массива $X=(x_1,x_2,x_N)$ в обратном порядке в массив $Y=(y_1,y_2,y_N)$.	Mассив X	
	Вычислить произведение элементов $Y c$ чет-		$P = \prod_{i=2,4,} y_i$
	ными индексами.		7 7
8	Вычислить элементы вектора $G = (g_1, g_2, g_M)$), как произв	ведения элемен-
	тов соответствующих строк заданной матрі	ицы A размер	рностью $M \times N$.

	Вариант №6		
Л.р.	Модель	Исходные	Выводимые
No		данные	данные
1	$\left(x+y, \ ecnu \ \ y^2 > x^2 + 1\right)$	x=3.5 a=3.2	y, z.
	$z = \begin{cases} x/y, & ecnu \ y^2 = x^2 + 1 \end{cases}$	b=2.3	
	$\left(x - y, \ ecnu \ y^2 < x^2 + 1\right)$		
	$y = \begin{cases} ax^2/bx, & ecnu \ x > 3\\ ax - b, & ecnu \ x \le 3 \end{cases}$		
	$(ax-b, ecлu x \le 3$		
2	$\int ax + b, ecnu \ x < 0.5$	$ \begin{array}{c c} a, b \\ 0 \le x \le 2 \end{array} $	y, x, N, k. F,
	$F = \frac{(N-k)b}{(N+k)a}, y = \begin{cases} \ln x + e^x, ecnu \ x = 0.5 \\ x + a/b, ecnu \ x > 0.5 \end{cases}$	$0 \le x \le 2$ $hx = 0.2$	Γ,
	$\left(x + a/b, ecnu \ x > 0.5\right)$		
	где N – кол-во y >0, k – кол-во y ≤0.		
3	$y = \sin^2 x + \ln(x + \sin x)$	$Q,$ $x \ge 1$	x, y, P. Сумма и
	$P = \Pi y$	hx=0.5	количество
	Считать P , до тех пор, пока станет $> Q$.		значений
			y>0
4	$\left(ax^2+b\right)$	$3 \le k \le 15$	
	$z = \begin{cases} \frac{dx + b}{bx + a} + \sqrt{ab + x}, ecnu \ x \ge a \\ x = k^2 - 2 \end{cases}$	hk = 4	
	$z = \begin{cases} bx + a \\ 1 \end{cases} \qquad x = k^2 - 2$	$2 \le b \le 4$	k, b, x, z
	$z = \begin{cases} \frac{ax^2 + b}{bx + a} + \sqrt{ab + x}, ecnu \ x \ge a \\ \frac{bx - a}{x^2} - \sqrt{x + a}, ecnu \ x < a \end{cases}$	hb = 0.5, a	
5	$3r^2 5r^4 7r^6 9r^8 (2i+1)r^{2i}$	Контрольн	ая формула
	$\frac{3x^2}{4!} - \frac{5x^4}{6!} + \frac{7x^6}{8!} - \frac{9x^8}{10!} + \dots \pm \frac{(2i+1)x^{2i}}{(2i+2)!} \mp \dots$	$\frac{1-\cos(x)-\cos(x)}{x}$	$\frac{x\sin(x)}{\cos(x)} + 0.5$
6	$\sin x_i^2 + \sqrt{ x_i +1}$, если $ x_i < 2$ 1 15 $\sum_{i=1}^{15} x_i^2$	Maccue X	Массив Ү.
	$y_i = \begin{cases} \sin x_i^2 + \sqrt{ x_i + 1}, \text{ если } x_i < 2\\ e^{0.5x_i} + \ln(x_i^2 + 1), \text{ если } x_i \ge 2 \end{cases} S = \frac{1}{15} \sum_{i=1}^{15} y_i$	ι 1 -1 γ	
	Значение и номер элемента y_i , наиболее отли-		
	чающегося от S .		
7	Записать элементы массива $X=(x_1,x_2,x_{25})$ с	Массив Х	Массив Ү.
	индексами 1, 4, 9, 16, 25 подряд в массив		$S = \sum_{k=0}^{5} y_k$
	$Y=(y_1,y_2,,y_5).$		$\begin{vmatrix} S - \sum y_k \\ k=1 \end{vmatrix}$
8	Рассчитать элементы матрицы $C = (c_{i,j})_{3,3}$, яс		роизведением
	матриц $A=(a_{i,j})_{3,4}$ и $B=(b_{i,j})_{4,3}$. Элементы матри		
	формуле:		
	$C_{ij} = \sum_{l=1}^{n} a_{il} \cdot b_{lj}$		
<u> </u>	<u> </u>		

Л.р.	Модель	Исходные	Выводи-
λ1.p. №	модель	данные	мые
312		данные	данные
1	$\int \sqrt[3]{ax+1}$, $ec\pi u \mid x \mid < d$	a=3.1	<i>х, z.</i>
	$z = \begin{cases} \sin(bx+1), & ecnu \mid x \mid = d \end{cases}$	b = 4.2	
	$z - \sin(\theta x + 1)$, ec. $u \mid x \mid - u$	c = 0.5	
	$\left \cos(cx+1),\ ecnu\ x >d\right $	d=5.3	
	$x = \begin{cases} \sqrt{ab}, & ecnu \ a < b \\ \sqrt{a+b}, & ecnu \ a \ge b \end{cases}$		
2	$y = \frac{3\sin(\omega\pi + x)}{2 + \cos(x - \omega\pi)}$	$-\frac{\pi}{} < r < \frac{\pi}{}$	$x, \omega, y.$
	$y - 2 + \cos(x - \omega \pi)$	$3 \stackrel{=}{=} \stackrel{=}{=} 3$	<i>P- произ-</i>
	$\int_{CO} \pi - \cos x, ecnu x \le \pi/4$	$-\frac{\pi}{3} \le x \le \frac{\pi}{3}$ $hx = \frac{\pi}{20}$	ведение (Р) v ∈ [0:5]
	$\omega = \begin{cases} \pi - \cos x, ecnu & x \le \pi/4 \\ \pi + \cos x, ecnu & x > \pi/4 \end{cases}$	20	$y \in [0, 3]$
3	$x = 2ab \sin \pi t \qquad Z = \sqrt{x+t}$	a, b,	t, x, Z, M,
	M=K!, где K - количество Z .	$t \le 5$ $ht = -0.5$	<i>K</i> .
	Считать Z , пока выражение $x+t \ge 0$.	nı0.3	
4	$\sqrt{a^2+x^2}+\sqrt{x/x}$, если $x \ge 0$	$2.2 \le a \le 4.2$	7
	$z = \begin{cases} \sqrt{(a+0.2x)^2} \\ \frac{1}{a+0.2x} \end{cases}$	ha = 0.5	a, k, x, z
	$z = \begin{cases} \sqrt{a^2 + x^2} + \sqrt{\frac{x}{(a+0.2x)}}, ecnu \ x \ge 0 \\ \sqrt{a^2 + x^2} - \sqrt{\frac{x}{(a+2x)}}, ecnu \ x < 0 \end{cases}$	$-1 \le a \le 3$ $hk = 0.4$	
	$x=k^2+k+0.1$		
5	$x^{3} - \frac{1}{8}x^{4} + \frac{1 \cdot 3}{8 \cdot 10}x^{5} - \frac{1 \cdot 3 \cdot 5}{8 \cdot 10 \cdot 12}x^{6} + \dots \pm \frac{1 \cdot 3 \cdot 5 \dots \cdot (2i - 3)}{8 \cdot 10 \cdot 12 \dots \cdot 2(i + 2)}$	Контрольно	я формула
	$8^{x} + 8 \cdot 10^{x} + 8 \cdot 10 \cdot 12^{x} + \dots \pm 8 \cdot 10 \cdot 12 \dots \cdot 2(i+2)$	$\frac{48}{15} \left(\sqrt{(x+5)^5} \right)^{-5}$	-1) $-8x-6x^2$
		13	
6	$a_i = 2\sin x_i + 0.3$	Массив Х	Массивы
	$\sqrt{a_i}$, если $x_i < 1$	$i = 1 \div N$	A, B, C.
	$b_{i} = \begin{cases} \sqrt{a_{i}}, \ ecnu \ x_{i} < 1 \\ 2.5a_{i} - \sqrt[3]{a_{i}}, \ ecnu \ x_{i} \ge 1 \end{cases}$		
	$c_i = max(a_i, b_i) - min(a_i, b_i)$		
	Максимальный элемент массива С среди чет-		
	ных элементов.		
7	Записать положительные элементы массива	Mассив X	Массив Ү.
	$X=(x_1,x_2,,x_N)$ подряд в массив $Y=(y_1,y_2,,y_k)$.		<i>k</i> ,
	Определить (к)-количество положительных		$P = \prod_{i=1}^{k} y_i$
	элементов. Вычислить произведение элементов массива Y с четными индексами		i=2,4,
8	Рассчитать элементы матрицы $C(c_{i,j})_{6,6}$ по	формула С-Т	$\Gamma(A) \vee R = 2 \partial a$
	n		
	$T_r(A) = \sum_{i=1}^{n} a_{ii}$ - след матрицы $A = (a_{i,j})_{6,6}$ и $B = (b_{i,j})_{6,6}$	_{5,6} - исходная м	іатрица.
L	ι=1		

	Вариант №8		
Л.р.	Модель	Исходные	Выводимые
No		данные	данные
1	$[\ln ax, ecnu \mid x < 3$	a=1.2	<i>x</i> , <i>z</i> .
1	$\{a + bc, acm, ab > c\}$	b=2.5	30, 2.
	$z = \begin{cases} bx^3, & ecnu \ x = 3 \end{cases}$ $x = \begin{cases} a + bc, & ecnu \ ab \ge c \end{cases}$	c=3.1	
	$z = \begin{cases} bx^{3}, & ecnu \ x = 3 \\ cx - 1, & ecnu \ x > 3 \end{cases} x = \begin{cases} a + bc, & ecnu \ ab \ge c \\ ab/c, & ecnu \ ab < c \end{cases}$	$\mathcal{C}=\mathcal{J}.1$	
	$(cx-1, echu \mid x \mid > 5$		
2		y=0.9	x, Z.
	2 2	-	Сумма Z.
	$ xy, \qquad ecnu x^2 + y^2 \le 1$	hx = 0.2	
	$\frac{1}{2}$		
	$Z = \left\{ x + \frac{x + y}{x}, ecnu^{x} + y \right\}$		
	$x-y$ $x \le 0$		
	$Z = \begin{cases} x + \frac{x+y}{x-y}, & ecnu \\ x^2 + y^2 > 1 \\ x \le 0 \end{cases}$ $2x + \frac{2x+y}{2x-y}, ecnu \\ x^2 + y^2 > 1 \\ x > 0$		
	$2x + \frac{2x + y}{2}$, $ecnu^{x} + y > 1$		
	(
3	$ \cdot \cdot x $	x, Q,	<i>y,a,F</i> .
	$y = a\cos a + \ln\left \sin\frac{x}{3}\right $	<i>a</i> ≥0	Количество
		ha=0.5	слагаемых в
	$F = \sum_{\alpha \in \mathcal{Q}} y$ Считать F , пока значение $F < Q$.		сумме.
4	-3≤ <i>y</i> ≤3		
4	$z = \begin{cases} ax^{2} + ax - \sqrt{\frac{b}{x + 0.2}}, ecnu x \ge 0.2\\ \frac{ax^{2} - ax}{a + x} \sqrt{\frac{b}{x + 0.2}}, ecnu x < 0.2 \end{cases}$	b = 7	
	$\sqrt{x+0.2}$	$0.5 \le a \le 2$	
	$z = \begin{cases} 2 & \text{and} \end{cases}$	ha=0.5;	
	$\left \frac{ax-ax}{a}\right $ $\frac{b}{a}$, $ecnu x<0.2$	$-1.2 \le t \le 2$	u, t, λ, λ
	(a+x)(x+0.2)	$-1.2 \le t \le 2$ ht=0.4	
	$x = (2t^2 + 0.3)/2$	ni-0.4	
5	$x = (2t^{2} + 0.3)/2$ $\frac{2x^{3}}{4 \cdot 1^{2} - 1} - \frac{2x^{5}}{4 \cdot 2^{2} - 1} + \frac{2x^{7}}{4 \cdot 3^{2} - 1} - \dots \pm \frac{2x^{2i+1}}{4i^{2} - 1} \mp \dots$	Контроль	। ная формула
	$\left[\frac{2\lambda}{4} \right]_{1}^{2} = \frac{2\lambda}{4} \left[\frac{2\lambda}{2} \right]_{1}^{2} + \frac{2\lambda}{4} \left[\frac{2\lambda}{2} \right]_{1}^{2} - \dots \pm \frac{2\lambda}{4z^{2}} = \frac{1}{4} \dots$	-	rctg(x) - x
6	$m_i = egin{cases} 1 + arctg rac{x_i}{1 + \sqrt{x_i}} , ext{если} x_i > 0.147 \ sin x_i^{2x_i} , ext{если} x_i \leq 0.147 \end{cases}$		Массив М.
	$m_i = \begin{cases} 1 & \text{if } l + \sqrt{x_i} \end{cases}$	$0.4 \le x_i \le 1.2$	
	$\sum_{i=1}^{n} \frac{1}{n} \frac{2x_i}{n} = 2x_i = 2x_i = 2x_i$		между Ѕ и
	$(Sin x_i)$, если $x_i \le 0.14$ /		<i>P</i> .
	$S = \frac{1}{N} \sum_{i=1}^{N} M_i \qquad P = \sqrt[N]{\prod_{i=1}^{N} M_i}$		
	<i>t</i> −1	1.6	16 77 6
7	Записать элементы массива $X=(x_1,x_2,,x_{16})$ в	Mассив X	Массив Ү. S
	обратном порядке в массив $Y=(y_1,y_2,,y_{16})$.		
	Вычислить $S=y_1+y_4+y_9+y_{16}$		
8	Подсчитать количество нулевых элементов	матрицы р	азмерностью
	$M \times N$ и напечатать их индексы.		

Л.р.	Модель	Исходные	Выролимые
л.р. №	модель	данные	Выводимые данные
1	(2/	a=1.5	
1	$\sqrt[3]{a+x}, ecnu x < 1$		<i>x, y</i> .
	$y = \begin{cases} \ln bx, & ecnu \ 1 \le x \le 5 \end{cases} x = \begin{cases} a^2b, & ecnu \ a < b \\ ab^2, & ecnu \ a \ge b \end{cases}$	v-2.1	
	$y = \begin{cases} \ln bx, & ecnu \ 1 \le x \le 5 \end{cases} x = \begin{cases} a \ b, & ecnu \ a < b \\ ab^2, & ecnu \ a \ge b \end{cases}$		
	$\sqrt{u+vx}$, echu $x>5$		
			_
2	$y = \begin{cases} tgZ, & ecnu \ Z \ge 1.4 \\ Z^2/i, & ecnu \ Z < 1.4 \end{cases}$ $Z = Ln(i)$	$1 \le i \le 10$	i, y, Z.
	$y = \begin{cases} Z^2 / & Z = Ln(i) \end{cases}$	hi = 1	
	$\left(\frac{z}{i}\right)$, echu $z < 1.4$		
	Произведение и количество положительных		
	значений у.		
3	$F=5.37x + ln(x^3+x^2+x)$	$x \leq 3$	F, x, P.
	$P = \prod F$	hx = -0.1	Количество
	Cчитать F до тех пор, пока выражение под		сомножи-
	знаком логарифма > 0 .		телей в Р.
4	$z = \begin{cases} ax + 1 - \frac{a^2}{x}, ecnu \ x < 6 \\ \frac{x - a}{\sqrt{ax}} + 2a, ecnu \ x \ge 6 \end{cases}$ $x = 0.5t^2 - 2$	$1 \le a \le 2$	
	$ax+1-\frac{1}{x}$, ecnu x<6	ha = 0.5	
	$z = \begin{cases} x = 0.5t^2 - 2 \end{cases}$	$-5 \le t \le 7$	a, t, x, z
	$\frac{x-a}{\sqrt{}} + 2a$, если $x \ge 6$	ht = 3	
		T.C.	7
5	$\frac{x^2}{4!} - \frac{x^4}{6!} + \frac{x^6}{8!} - \frac{x^8}{10!} + \dots \pm \frac{x^{2i}}{(2i+2)!} \mp \dots$		ная формула
	$\frac{1}{4!} - \frac{1}{6!} + \frac{1}{8!} - \frac{1}{10!} + \dots \pm \frac{1}{(2i+2)!} + \dots$	$\frac{\cos(x)}{x}$	$\frac{(x)}{2} + \frac{1}{2}$
		x^2	2
6	(ain ² aas(–) aa s x	Mассив X	Массив Р
	$sin^2 x_i - cos(x_i - \pi)$, если $x_i < \pi$	$i = 1 \div N$	до замены и
	$p_i = \left\{ 2\sqrt{x_i} - \sqrt[5]{x_i} \right\}$		после.
	$p_{i} = \left\{ rac{2\sqrt{x_{i}} - \sqrt[5]{x_{i}}}{x_{i} + 2.5}, \text{ если } \mathbf{x}_{i} \geq \pi ight.$		Среднее
	Каждый элемент p_i заменить его отклонени-		арифмети-
	ем от среднего арифметического элементов		ческое мас-
	массива Р.		сива Р по-
		1.6	сле замены.
7	Записать элементы массива $X=(x_1,x_2,,x_{12})$ в	Массив Х	Массив Ү.
	массив $Y=(y_1,y_2,,y_{12})$, сдвинув элементы мас-		$P = \prod_{i=2,4,\dots}^{12} y_i$
	сива Х вправо на три позиции. При этом три		i=2,4,
	элемента из конца массива Х перемещаются		
0	в начало, т.е. $(y_1, y_2,, y_{12}) = (x_{10}, x_{11}, x_{12}, x_1,, x_9)$.		
8	Найти в каждой строке матрицы $P=(p_{i,j})_{N,N}$ н		лемент и по-
	менять его местами с элементом главной диаг	онали.	

П	Может	Maria zarra	D
Л.р.	Модель	Исходные	Выводимые
<u>№</u>		данные	данные
1	$\sin^2 x + 1, ecnu x \le c$	a=2.4 c=3.2	<i>x</i> , <i>z</i> .
	$z = \begin{cases} \cos x - 1, & ec\pi u \ c < x < d \\ e^x + 1/a, & ec\pi u \ x \ge d \end{cases}$	d=4.7	
	$e^x + 1/a$, если $x \ge d$		
	$x = \begin{cases} (a+c)d, & ecnu \ a < c \\ (a-c)/d, & ecnu \ a \ge c \end{cases}$		
	$a = (a-c)/d$, если $a \ge c$		
2	$y = t^{-x} + 5 \qquad t = \begin{cases} 0.7 - 1/x, ecnu \ x \ge 0 \\ x + 0.3, ecnu \ x < 0 \end{cases}$	$-5 \le x \le 5$ $hx = 1$	<i>x, t, y. Количество y>t.</i>
	Сумма первых пяти значений t	1	0.5
3	$Q = \frac{a+b}{2a-b}(a+c)\sin(x+a)$	<i>b</i> , <i>c</i> , <i>x</i> , <i>a</i> ≥0	а, Q, F. Количество
	$F = \prod Q$	ha=0.5	сомножи-
	Считать F до тех пор, пока $F \in [-2;5]$.		телей в F.
4		$4 \le x \le 6;$ $hx = 1$	1 1
	$z = \begin{cases} kx + \sqrt{2x + b}, & ecnu \ b \ge 0.5\\ \frac{\sqrt{kb}}{bk + 3} - k^2x, & ecnu \ b < 0.5 \end{cases} b = \frac{k + 0.7}{3}$	$1 \le k \le 6.5$ $hk = 0.5$	x, k, b, z
5	$1 - \frac{3}{2}x + \frac{3 \cdot 5}{2 \cdot 4}x^2 - \frac{3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6}x^3 + \dots \pm \frac{3 \cdot 5 \cdot 7 \cdot \dots \cdot (2i+1)}{2 \cdot 4 \cdot 6}x^i \mp \dots$		ная формула
	$1 - \frac{1}{2}x + \frac{1}{2 \cdot 4}x - \frac{1}{2 \cdot 4 \cdot 6}x + \dots \pm \frac{1}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2i}x + \dots$		1
		$\sqrt{(1)}$	$\overline{(x-x)^3}$
6	$z = 2\sin^2\frac{\pi}{2} + 35x^3$	Массив Х	
	$z_{i} = 2\sin^{2}\frac{\pi}{3}x_{i} + 3.5x_{i}^{3}$	$i = 1 \div N$	Z. Расстоя-
	$\left\{ 1 + e^{-Zi}, ecлu Z_i > 3 \right.$		ние между
	$y_i = \begin{cases} Z_i + \sqrt{ Z_i }, & ecnu - 1 \le Z_i \le 3\\ cos Z_i + Z_i^2, & ecnu Z_i < -1 \end{cases}$		двумя точ-ками, коор-
	$y_i = \sum_{i=1}^{n} \sqrt{ z_i }, \text{cosm} 1 = \sum_{i=1}^{n} z_i$		динаты
	$\left(\cos Z_i + Z_i^-, \ ecnu \ Z_i < -1 \right)$		которых
			заданы
			массивами
7	Записать отрицательные элементы массива	<i>Массив Х</i>	Ү и Z. Массив Ү.
'	$X=(x_1,x_2,,x_N)$ подряд в массив $Y=(y_1,y_2,,y_k)$.	wincent A	k, P
	Определить (к)-количество отрицательных		, -
	элементов. Вычислить $P = \prod_{i=1}^k y_i$		
8	$C \phi$ ормировать вектор $B = (b_1, b_2 b_7)$, каждый з	элемент кот	орого опреде-
	ляется как минимальный элемент соответствующего столбца исходной		
	матрицы $A = (a_{i,i})_{6,7.}$		

	Мотот	Maria	D
Л.р.	Модель	Исходные	Выводимые
№		данные	данные
1	$a\sqrt[3]{x}$, ecnu $x < 1$	a=3.7	<i>x</i> , <i>y</i> .
	$v = \begin{cases} b/x, ec\pi u & 1 \le x \le 3 \end{cases}$ $x = \begin{cases} ab+c, ec\pi u & a \le b+1 \end{cases}$	b=2.9	
	$y = \begin{cases} a / x, echu x < 1 \\ b / x, echu x < 3 \end{cases} x = \begin{cases} ab + c, echu a \le b + 1 \\ a / b - c, echu a > b + 1 \end{cases}$ $cx^{2}, echu x > 3$	c = 0.3	
	$(cx^2, ecnu x > 3)$		
2	$y = \begin{cases} x^2 + 1, ecnu \ x < 0 \\ 0, ecnu \ x = 0 \end{cases} z = \frac{x^2}{y + 1.2}$ $\sin x, ecnu \ x > 0$	$-1 \le x \le 1$	x, y, z.
	$y = \begin{cases} 0 & z = x^2 \end{cases}$	hx=0.2	Количест-
	$y = 0$, echu $x = 0$ $z = \frac{1}{v+1.2}$		во y<0,
	$\left \sin x, ecnu \right x > 0$		y=0, y>0 u
	·		большее из
			них.
3	$Z = \frac{x^4}{36.04x^3 - \frac{0.98\sin^3 x}{15.1x - \ln x}}$	Q_{r}	x, Z
	26.04^{-3} $0.98\sin^3 x$	<i>x</i> ≥ <i>l</i> ,	Количество
	$36.04x^{3} - \frac{15.1x - \ln x}{1}$	hx=0.1	вычислен-
	Считать Z до тех пор, пока оно остается		ных Z, и
	меньше Q.		сумма пер-
4	(вых пяти Z.
4	$z = \begin{cases} \frac{a}{x^2 + 1.5} + \sqrt{a + x}, ecnu \ x \ge 2\\ 2\sqrt{a} - \frac{x}{a}, & ecnu \ x < 2 \end{cases}$	$-3 \le x \le 3$	
	$\int x^2 + 1.5$	hx = 2	a v 7
	$\begin{bmatrix} z - \\ z - \end{bmatrix}_{2} \begin{bmatrix} x \\ z \end{bmatrix}$	$1 \le a \le 2$	a, x, z
	$\left(2\sqrt{a} , ecnu \ x < 2 \right)$	ha = 0.5	
5	$x^{2}\left(\frac{1}{1!}+\frac{1}{2!}\right)-x^{4}\left(\frac{1}{2!}+\frac{1}{4!}\right)+x^{6}\left(\frac{1}{3!}+\frac{1}{6!}\right)\pm x^{2i}\left(\frac{1}{i!}+\frac{1}{(2i)!}\right)\mp$	Контрольн	ая формула
	$\begin{bmatrix} x & \left(\frac{1}{1!} + \frac{1}{2!}\right)^{-x} & \left(\frac{1}{2!} + \frac{1}{4!}\right)^{+x} & \left(\frac{1}{3!} + \frac{1}{6!}\right)^{-\dots \pm x} & \left(\frac{1}{i!} + \frac{1}{(2i)!}\right)^{+\dots} \end{bmatrix}$	2^{-3}	$-\cos(x)$
			` ´
6	$ I + x_i \sin x_i $, если $x_i \ge 0.2$	Массив Х	
	$p_i = egin{cases} I + x_i \sin x_i , \text{ если } x_i \geq 0.2 \\ \sqrt{I + 2x_i^3}, & \text{ если } x_i < 0.2 \end{cases}$	$i = 1 \div N$	$ maxP_i.$
	Найти (тахР) максимальный элемент масси-		
	ва Р. Если тахР меньше суммы всех осталь-		
	ных элементов, то присвоить этому элемен-		
	ту значение 0.		
7	Записать восемь первых отрицательных эле-	Массив Х	Массив Ү.
	ментов массива $X = (x_1, x_2,, x_N)$ в массив		P
	$Y=(y_1,y_2,,y_8).$		
	B ычислить $P = \prod_{i=1}^{8} y_i$		
	$\hat{i}=\hat{1}$		
8	Преобразовать исходную матрицу $A = (a_{i,j})_{5,7}$ т		
	мент каждой строки был заменен суммой про	едыдущих эл	ементов той
	же строки.		

Л.р.	Модель	Исходные	Выводимые
No		данные	данные
1	$y = \begin{cases} x^3 + 1, & ecnu \ x < 4 \\ x^2 + 1, & ecnu \ 4 \le x < 5 \ x = \begin{cases} a^2 / b^2, & ecnu \ a \le b \\ a / b, & ecnu \ a > b \end{cases}$	<i>a</i> =1.3 <i>b</i> =4.5	<i>x</i> , <i>y</i> .
	$\begin{cases} x + 1, & ecnu \ x \ge 5 \end{cases} \qquad \begin{cases} a/b, & ecnu \ a > b \end{cases}$		
2	$\left[2x^3+3,ecnu \text{ x}\geq 5\right]$	$0 \le x \le 10$	x, Z, F. Ko-
	$Z = \begin{cases} 7x + 6, ecnu \ 1 \le x < 5 F = 0.25Z + \cos^2 Z \end{cases}$	hx=1	личество значений
	$\left[-2/x^3, ecnu \times < 1\right]$		<i>F</i> ∈[-1;1].
3	$Z = 2.33q + \sqrt{0.2 \frac{q^3}{2q^2 - 1}}$	$q \le 10$ $hq = -0.5$	q, z. Количество и сумма вы-
	Считать Z до тех пор, пока подкоренное вы- ражение положительно.		численных значений Z.
4	$\left[x^2\left(\sqrt{c+2}-ic\right), ecлu \ x>0\right]$	$3 \le c \le 5$	
	$z = \begin{cases} x^2 (\sqrt{c+2} - ic), ecnu \ x > 0 \\ \frac{b}{\sqrt{i^2 + 1.7}}, ecnu \ x \le 0 \end{cases} x = i^2 - 0.7$	hc = 0.5 -1\le i \le 2 hi = 0.2	C, i, x, z
5	$\frac{x(4-x)}{4!} - \frac{x^5(8-x)}{8!} + \frac{x^9(12-x)}{12!} - \dots \pm \frac{x^{4i-3}(4i-x)}{(4i)!} \mp \dots$	Контрольн	ная формула
	4! $8!$ $12!$ $(4i)!$	-	$\frac{\cos(x) - e^{-x}}{x^2}$
6	$(y_i + \pi \cos \pi y_i, \text{ если } x_i > 1)$	Массив Ү	Массивы
	$p_i = \begin{cases} y_i + \pi \cos \pi y_i, & \text{если } x_i > 1 \\ 1 + \sqrt{ y_i + I}, & \text{если } x_i \le 1 \end{cases}$	$ 4 \le x_i \le 12 \\ hx_i = 2 $	<i>X, P.</i>
	$x_i = y_i^2 + 2y_i + 3$		
	Значения и номера минимального и макси-		
7	мального по модулю элементов массива Р.	Magazza V	Magazia V
7	Записать элементы массива $X=(x_1,x_2,,x_N)$, удовлетворяющие условию $X_i \in [2,3]$, подряд в	Массив Х	Массив Y. k, S
	массив $Y = (y_1, y_2,, y_k)$. Определить (к)-		10, 0
	количество таких элементов. Вычислить		
	$S = \sum_{i=1}^k y_i$		
8	Найти отношение количества положительны.	х элементов	к количеству
	элементов отрицательных заданной матрицы		
	случае, если матрица F не содержит отрицап		
	чатать соответствующее сообщение, и умен	ьшить в 2 р	аза все поло-
	жительные элементы.		

	Вариант №15	11	D
Л.р.	Модель	Исходные	Выводимые
№		данные	данные
1	$(a+b)x, ecnu x < 3$ $(a^2/b, ecnu ab > 1)$	a=3.6	<i>x</i> , <i>y</i> .
	$y = \begin{cases} (a+b)x, ecnu \ x < 3 \\ (a-b)x, ecnu \ x = 3 \end{cases} x = \begin{cases} a^2/b, ecnu \ ab \ge 1 \\ b^2 - 1, ecnu \ ab < 1 \end{cases}$	b = 2.3	
	$\begin{vmatrix} ax/b, & ecлu & x > 3 \end{vmatrix}$ $\begin{vmatrix} b^2 - 1, & ecлu & ab < 1 \end{vmatrix}$		
2	$P = \sum_{i=1}^{n} (1 - i)^2 + 0.5 = 2i^2$	$0 \le x \le 2$	Z, y, x, R.
_	$R = \sqrt{\sum_{y>z} (y-z)^2} y = \sin^2 x + 0.5 \cos x^2$	hx=0.1	Количество
			слагаемых в
	$\left \cos^2\frac{\pi}{4}x, ecnu\right y > x^2$		R.
	$Z = \begin{cases} \cos^2 \frac{\pi}{4} x, ec\pi u & y > x^2 \\ 1 + 1/x, & ec\pi u & y \le x^2 \end{cases}$		
	$\left 1 + 1/x, ecnu y \le x^2 \right $		
3	b a	<i>b, C.</i>	a, y.
	$\frac{1}{12-5\sqrt{\pi a^2}} + \frac{1}{1} + \frac{\sqrt{2}}{2}$	<i>a</i> ≥0	Вычислить
	$y = \sqrt[5]{\pi a^2} + \frac{1}{b} + \frac{b - \frac{a}{2}}{a + b}$	ha=0.1	K=N!
	Считать у до тех пор, пока подкоренное вы-		где N - кол-
	p ажение $\leq C$		во вычис-
4		0.5 < .2	ленных у.
4	$z = \begin{cases} a^2 - x^2 - \frac{x}{a+1}, ecnu \ x > 2\\ \frac{7x - a}{x^2} + 0.6a^2, ecnu \ x \le 2 \end{cases}$	$0.5 \le a \le 2$ $ha = 0.1$	
	$a+1$, $x = \sqrt{k^2 + 0.6}$	na - 0.1	a, k, x, z
	$\left \frac{7x-a}{x^2} + 0.6a^2 \right e^{2\pi u} x < 2$	$-1 \le k \le 5$	α, κ, λ, Δ
	$\int_{0}^{\infty} x^2$	hk = 1.5	
5	$(1 \ 1) \ _{2}(1 \ 1) \ _{3}(1 \ 1) \ _{i}(1 \ 1)_{-}$		ная формула
	$x\left(\frac{1}{1} - \frac{1}{1!}\right) - x^{2}\left(\frac{1}{2} - \frac{1}{2!}\right) + x^{3}\left(\frac{1}{3} - \frac{1}{3!}\right) - \dots \pm x^{i}\left(\frac{1}{i} - \frac{1}{i!}\right) \mp \dots$	_	$-e^{-x}+1$
6	$3\sin(\pi t + r)$		
0	$y_i = \frac{3\sin(\varpi t + x)}{2 + \cos(x - \varpi t)}$	$-\frac{\pi}{3} \le x \le \frac{\pi}{3}$	1VIUCCUB 1.
		σ σ	
	$\frac{\pi}{2} - 2x$ $e^{\pi} = 2x$	$hx = \frac{\pi}{24}$	
	$\varpi = \begin{cases} \frac{\pi}{2} - 2x, & ecnu \ x \le 2\\ \pi - 2x, \ e \ ocmaльных \ cnyчаях \end{cases}$	∠ -1	
	$\pi - 2x$, в остальных случаях		
	Сумма и количество элементов массива Ү,		
	лежащих на отрезке [0;2].		
7	Записать элементы массива $X=(x_1,x_2,,x_N)$ в	Mассив X	Массив Ү.
	обратном порядке в массив $Y=(y_1, y_2,, y_N)$ за		$S = \sum_{i=1}^{16} y_i$
	исключением 1-го и последнего элементов.		<i>i</i> =1,3,
	Вычислить сумму элементов массива Ү с нечетными индексами.		
8	Π реобразовать заданную матрицу $B=(b_{i,j})_{4,6}$ то	ακμμ οδημέοι	 1 итобы пер_
0	преобразовать забанную матрицу $B = (0_{i,j})_{4,6}$ то вый элемент каждого столбца был заменен пр		
	элементов того же столбца.	on sococine m	послебующих
L			

Л.р.	Модель	Исходные	Выводимые
No No	inoquib	данные	данные
1	(a+x, ecnu x < 5)	a=2.5	<i>x, y</i> .
	$y = \begin{cases} a + x, & ecnu \ x < 5 \\ ax, & ecnu \ 5 \le x < 7 \end{cases} x = \begin{cases} \sqrt{a^2 + 1}, & ecnu \ a \ge 2 \\ \sqrt[3]{a^3 + 1}, & ecnu \ a < 2 \end{cases}$		
	$y - \frac{1}{3} \frac{1}{3} \frac{3}{3} + \frac{1}{3} \frac{3}{3} \frac{3}$		
2	$S = \sum_{i=1}^{5} Z, \varepsilon \partial e y = i^2 - i - 10$	$1 \le i \le 10$	i, y, Z, S.
	$\sum_{i=1}^{3} 2^{i}, \cos^{2} y i i 10$	hi=1	Количество
	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$		y>0
	$Z = \begin{cases} y + -\sin(-y), ecnu & y < 0 \end{cases}$		
	$Z = \begin{cases} y + \frac{\pi}{2} \sin \frac{\pi}{2} y, ecnu & y < 0 \\ 1, & ecnu & y \ge 0 \end{cases}$		
3		a, b,	Z, x, y.
	$Z = \frac{x}{\sqrt{a^2 + b^2}} + tgx^3$	<i>x</i> ≥5	Количество
	Va 10	hx = 0.3	Z > b.
	$y = \prod Z$.		
	Считать у до тех пор, пока оно станет боль-		
	ше 100.	1 < 1 < 0	
4	$z = \begin{cases} x^2 - \frac{b}{\sqrt{b^2 - x}}, ecnu \ x < 0.5 \\ \sqrt{x(b + 3x^2)}, ecnu \ x \ge 0.5 \end{cases} \qquad x = \frac{t^2}{2 + t}$	$4 \le b \le 8$	
	$z = \begin{cases} \sqrt{b^2 - x} \end{cases}$ $x = \frac{t}{2 + t}$	$hb = 1$ $1 \le t \le 2.5$	b, t, x, z
	$\sqrt{x(b+3x^2)}$, если $x \ge 0.5$	ht = 0.5	
5			। ная формула
	$x - \frac{3}{8}x^{2} + \frac{3 \cdot 7}{8 \cdot 12}x^{3} - \frac{3 \cdot 7 \cdot 11}{8 \cdot 12 \cdot 16}x^{4} + \dots \pm \frac{3 \cdot 7 \cdot 11 \cdot \dots \cdot (4i - 5)}{8 \cdot 12 \cdot 16 \cdot \dots \cdot 4i}x^{i} \mp$	-	$\frac{16x}{x}$ $\frac{4}{x}$ $\frac{4}{x}$
6	$\left(\begin{array}{c c} x_i \end{array}\right)$	Mассив X	Массив Z до
	$\left \begin{array}{ccc} 1 & -\frac{1}{2} & -\frac{1}{$	$i = 1 \div N$	
	$z_{i} = \begin{cases} \sqrt{\frac{ x_{i} }{1 + x_{i}^{2}}}, & ecnu x_{i} \leq 2\\ \sqrt[3]{x_{i}^{2} + 1}, & ecnu x_{i} > 2 \end{cases}$		сглажива-
			<i>ния</i> .
	Элементы Z_i сгладить по формуле:		
	$Z_i = \frac{Z_{i-1} + Z_i + Z_{i+1}}{3}$		
	5		
7	Записать каждый третий элемент массива	Массив х	Массив Ү.
	$X=(x_1,x_2,,x_{15})$ в массив $Y=(y_1,y_2,,y_5)$. Вы-		S
	$\frac{1}{5}$		
	$uucлumь S = \frac{1}{5} \sum_{i=1}^{5} y_i$.		
	ı=1 Найти максимальный элемент массива Ү.		
8	Преобразовать матрицу $C = (c_{i,j})_{8,8}$ так, чтоби	ы все элемен	і Іты располо-
	женные ниже главной диагонали, были умень		
	расположенные выше главной диагонали, - увел		
1	, , , , , , , , , , , , , , , , , , , ,		

	Вариант №15		
Л.р.	Модель	Исходные	Выводимые
$N_{\underline{0}}$		данные	данные
1	$y = \begin{cases} \sqrt{b + x^2}, ecnu \ x < 1 \\ abx, ecnu \ 1 \le x \le 5 \end{cases} x = \begin{cases} ab + 3, & ecnu \ ab \le 3 \\ a/b - 3, & ecnu \ ab > 3 \end{cases}$ $bx^3, ecnu \ x > 5$		x, y.
2	$S = \sum p; A = \prod q \qquad q = 0.5/\sin \pi x$ $p = \begin{cases} 0.5x/\cos x, ecnu & q > 0.5 \\ 2x\sin x, ecnu & q \le 0.5 \end{cases}$	$0 \le x \le 2$ $hx = 0.2$	x, q, P, S, A. Количество p<0.
3	$A = \sin^2 b + \cos(b - \pi) + 1$ $F = \prod A$ Считать F до тех пор, пока F остается меньше 10 .	<i>b</i> ≥0 <i>hb</i> =0.1	b, A, F. Количество $A > 0.$
4	$z = \begin{cases} \frac{x-a}{\sqrt{x^2+1}}, & ecnu \ x > 5\\ \frac{x-3}{a} + \sqrt{a^2+x^2}, & ecnu \ x \le 5 \end{cases}$	$5 \le a \le 7$ $ha = 1$ $0.5 \le t \le 2$ $ht = 0.5$	a, t, x, z
5	$\frac{2 \cdot 1^2 + 1}{2!} x^2 - \frac{2 \cdot 2^2 + 1}{4!} x^4 + \frac{2 \cdot 3^2 + 1}{6!} x^6 - \dots \pm \frac{2i^2 + 1}{(2i)!} x^{2i} \mp \dots$	K онтрольн $1 + \frac{x}{2}\sin(x) + \frac{x}{2}\sin(x)$	$\left(\frac{x^2}{2}-1\right)\cos(x)$
6	$a_{i} = \begin{cases} x_{i}^{2} + 2x_{i} - 5, \ ecnu \ x_{i} < 0 \\ 2x_{i} + \cos \frac{\pi}{x_{i}}, \ ecnu \ x_{i} \ge 0 \end{cases}$ $S = \sum_{a_{i} > 0} a_{i}, P = \prod_{a_{i} < 0} a_{i}$	$-5 \le x_i \le 5$ $hx_i = 0.9$	M ассивы X , A . S , P . K оличество $a_i < 0$.
7	Записать каждый элемент $X=(x_1,x_2,,x_N)$, удовлетворяющие условию $x_i \ge 3$, в массив $Y=(y_1,y_2,,y_k)$. Определить (k) — количество таких элементов. Вычислить $P=k\sqrt{\prod_{i=1}^k y_i}$	Массив Х	Массив Y. k, P
8	Найти среднее арифметическое в каждом ст и найти номер столбца с максимальным значе ческого.		· •

	Вариант №16		
Л.р.	Модель	Исходные	Выводимые
No		данные	данные
1	$a\sqrt{x}$, если $x < 2$	a = 5.4	<i>x</i> , <i>y</i> .
	$(a+b)/c$, если $a \le b$	b = 2.4	
	$y = \{bx^2, ecnu \ 2 \le x < 3 \ x = \}$	c = 1.9	
	$y = \begin{cases} bx^2, ecnu & 2 \le x < 3 \ x = \begin{cases} (a+b)/c, ecnu & a \le b \\ (a-b)c, & ecnu & a > b \end{cases}$ $c \cdot e^x, ecnu & x \ge 3$		
2	$\begin{cases} \sin x & 2 & 13 & 0 \end{cases}$	a,b	x, y, S, P.
	$y = \begin{cases} e^{\sin x}, & ecnu \ a^2x < b^3 \\ (x^2 - a)/\sin x, ecnu \ a^2x = b^3 \\ tg 4.5x, & ecnu \ a^2x > b^3 \end{cases} P = \prod_{y < 0} y$	•	[x, y, D, T]
	$y = \left\{ (x^2 - a) / \sin x, ecnu \ a^2 x = b^3 \right\}$	$\frac{\pi}{2} \le x \le 2\pi$	
	$\int_{to 4.5x} \int_{ecu \cdot a^2 x > b^3} P = \prod y$	<i>_</i>	
	(ig + .5x, echi if x > 0 $y < 0$	$hx = 0.1\pi$	
3	$y = 8.36 \sin x + \sqrt{a^2 + \frac{\pi}{2}}$ Считать у до тех	x, Q,	<i>a</i> , <i>y</i> .
	$\sqrt{\frac{y-6.50 \sin x}{2}}$	a≥0 ha=0.4	Количество
	$nop, noka a^2 + \frac{\pi}{2} npeвыcum значение Q.$	nu-0.4	(N) вычис- ленных у.
	$\frac{nop, noka}{2}$ $\frac{a}{2}$		K=N!
4			11 1,,,
	$\sqrt{x^2 + \frac{a}{x^2} + x^3}$, ecnu x<1.6	$3 \le a \le 5$	
	$z = \begin{cases} V & 4 \\ x = \sqrt{4+t} \end{cases}$	ha = 0.5	a, t, x, z
	$a+\frac{x}{\sqrt{2}}$, если $x \ge 1.6$	$1 \le t \le 7$ $ht = 1.5$	
	$z = \begin{cases} \sqrt{x^2 + \frac{a^2}{4}} + x^3, ecnu \ x < 1.6 \\ a + \frac{x}{\sqrt{a} - x}, ecnu \ x \ge 1.6 \end{cases}$ $x = \sqrt{4 + t}$	$n\iota - 1.5$	
5	$\frac{1}{2}x - \frac{1 \cdot 3}{2 \cdot 4}x^2 + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}x^3 - \dots \pm \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2i-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2i}x^i \mp \dots$	Контрольн	ная формула
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	$\frac{1}{\sqrt{1+x}}$
		1	$\sqrt{1+x}$
6	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$		Массивы Ү,
	$z_i = \begin{cases} x_i + \frac{1}{2}\sin(\frac{1}{2}x_i), & echu \ y_i \ge 1 \end{cases}$	$i = 1 \div 10$	Z.
	$z_{i} = \begin{cases} x_{i}^{2} + \frac{\pi}{2} \sin \frac{\pi}{2} x_{i}, & ecnu \ y_{i} \ge 1 \\ 1 + \sqrt{ x_{i} }, & ecnu \ y_{i} < 1 \end{cases}$		
	$y_i = x_i^2 - 2x_i - 3$		
	Считать пары точек (y_i, z_i) координатами мочек на поверхности VOZ . Определить ка		
	точек на поверхности YOZ. Определить, ка- кая из точек 2, 310 наиболее удалена от		
	точки (y_1, z_1) .		
7	Записать положительные элементы массива	Массив Х	Массив Ү.
	$X=(x_1,x_2,,x_N)$ подряд в массив $Y=(y_1,y_2,,y_k)$.		k, S
	Определить (к) – количество положительных		
	элементов. Вычислить сумму элементов мас-		$S = \sum_{i=1,3,\dots}^{k} y_i$
	сива Ү с нечетными индексами.		<i>i</i> =1,3,
8	Найти отношение минимального элемента ма	атрицы $A = \overline{(a + b)}$	u _{i,j}) _{5,6} и мак-
	симального элемента матрицы $B = (b_{i,j})_{7,8}$.		

	вариант №1 /	TT	Ъ
Л.р.	Модель	Исходные	Выводимые
$N_{\underline{0}}$		данные	данные
1	$b \cdot e^x$, если $x = 2$	a = 4.1	<i>x</i> , <i>y</i> .
	$y = \begin{cases} ab + 2, & ecnu \ a \ge b \\ 1/\sin x, & ecnu \ x > 2 \end{cases} x = \begin{cases} ab + 2, & ecnu \ a \ge b \\ a/b + 2, & ecnu \ a < b \end{cases}$	b = 3.7	
	$y = \{1/\sin x, ecnu \ x > 2 \ x = \{a/b + 2, ecnu \ a < b\}$		
	$ax^{2} + b$, ecnu $x < 2$		
	(
2	20	a,b,c,d	v v f
	$z = 2.5e^{xy} - 1.8/x$	$0.1 \le x \le 1$	x, y, f.
	$\left[(x - 1.7/x)^2, ecnu \ a \le x \le b \right]$	hx=0.1	Сумма вы-
		nx-0.1	численных z.
	$y = \left\{1 - \sqrt[3]{x}, ecnu \ c \le x \le d\right\}$		
	-1.2tg(x), в остальных случаях		
3	$1 - \sin h$	<i>b</i> ≤ <i>3</i>	b, C, F.
	$C = \frac{1 - \sin b}{\ln(b^5 - b^2 + b)}$ $F = \sum C$	$b \le 3$ hb = -0.2	в, с, г. Количество
	m(o o ro)	110 -0.2	вычислен-
	Считать С до тех пор, пока выражение под		ных С.
	знаком логарифма >1.		noix C.
4	$z = \begin{cases} \sqrt{x+a(x^2-1)}, ecnu \ x > 0 \\ \frac{\sqrt{a+1-x}}{x^2+a}, ecnu \ x \le 0 \end{cases} \qquad x = \frac{k+1.5}{k}$	$-2 \le a \le 3$	
	$z = \begin{cases} \sqrt{\alpha + 1} & x \end{cases}$	$2 \le k \le 6$	a, k, x, z
	$-\frac{\sqrt{u+1-x}}{2}$, $ec\pi u \ x \le 0$	ha=0.5	<i>ci, 10, 30, 2</i>
		hk = 0.4	
5	$\frac{x}{3!} - \frac{x^3}{5!} + \frac{x^5}{7!} - \frac{x^7}{9!} + \dots \pm \frac{x^{2i-1}}{(2i+1)!} \mp \dots$	Контрольн	ная формула
	$\frac{-}{3!}$ $\frac{-}{5!}$ $\frac{+}{7!}$ $\frac{-}{9!}$ $+ \pm \frac{1}{(2i+1)!}$ $+$	\underline{x} –	$\sin x$
	S: S: T: S: (2i+1):	,	\mathfrak{c}^2
6	$\sin a_i^2 + \cos(a_i - \pi), ecnu \ a_i \ge \pi$		Массив Ү
		$i = 1 \div 11$	до и после
	$y_i = \left\{ \frac{a_i^2 + a_i - 3}{a_i^2 + a_i - 3} \right\}$		замены.
	$y_i = \left\{ \frac{a_i^2 + a_i - 3}{a_i + \sqrt{a_i^2 + 1}}, ecлu \ a_i < \pi \right\}$		
	Среднее арифметическое (R) элементов мас-		
	сива Ү. Заменить все отрицательные эле-		
	менты массива Y суммой R и значения соот-		
	ветствующего элемента.		
7	Найти (тах) – максимальный элемент масси-	Массив Х	Массив Ү.
	ва $X=(x_1,x_2,,x_N)$ и его номер. Записать эле-	-	max
	менты массива х подряд в массив		
	$Y=(y_1,y_2,,y_N)$, поменяв местами максималь-		
	ный элемент $u x_1$.		
8	В матрице $A = (a_{i,j})_{K,K}$ элементы главной диаго	 Энали замени	ть «1». если
	данный элемент больше последующих элеме		
	строки, и «0» - в противном случае.		,

П	вариант №18	TT	D	
Л.р.	Модель	Исходные	Выводимые	
$N_{\overline{0}}$		данные	данные	
1	$\begin{cases} \sin x + a, & ec\pi u \ x < a \end{cases}$	a = 2.7	X, Z .	
		b = 3.5		
	$z = \left\{ \cos \pi x - b, \ e c \pi u \ a \le x \le b \right\}$			
	$tg(x^2)$, если $x > b$			
	(a-1)/(b-2), если $a > b-1$			
	$x = \begin{cases} (a-1)/(b-2), & ecnu \ a > b-1 \\ (a+1)/(b+2), & ecnu \ a \le b-1 \end{cases}$			
2	$\left\{ Z, ecлu Z > 0 \right\}$	$-1 \le x \le 5$	<i>y</i> , <i>F</i> , <i>x</i> , <i>Z</i> .	
	$F = \begin{cases} Z, ecnu \ Z > 0 \\ 0, ecnu \ -1 \le Z \le 0 \\ Z^2, ecnu \ Z < -1 \end{cases} \qquad Z = x^3 + 5/x \\ y = F + 0.38tg(Z)$	hx=0.2	Количество	
	$F = \begin{cases} 0, ecnu - 1 \le Z \le 0 \\ v = F + 0.38t\sigma(Z) \end{cases}$		<i>y>Z</i>	
	$ Z^2, ecnu Z < -1 $		$S = \sum y$	
	,		$\overline{y} < 5$	
3	_ 1	$q \leq 2$	F, g.	
	$F = \sqrt{1 + \sin(q/2) - \frac{1}{q+1}}$ $y = \sum_{F>1} F$	hq = -0.1	Количество	
	- 1 >1	1	слагаемых в	
	Считать F до тех пор, пока подкоренное вы-		сумме.	
	ражение >0.		-	
4	$z = \begin{cases} tx + \frac{25}{\sqrt{b + x^2}}, ecnu \ x < 3 \\ t\sqrt{\frac{b}{x} + 3}, ecnu \ x \ge 3 \end{cases}$ $x = 0.3t^2$	$4 \le t \le 6.5$		
	$\sqrt{h+x^2}$, cent $x < 3$	ht = 0.5;	_	
	$z = \begin{cases} \sqrt{b + x} & x = 0.3t^2 \end{cases}$	$3 \le b \le 4.5$	t, b, x, z	
	$ t_1 ^{\frac{D}{2}} + 3$, если $x \ge 3$	hb=0.5		
5	$2x 3x^2 4x^3 5x^4 (i+1)x^i$	Контрольн	ая формула	
	$\frac{2x}{1!} - \frac{3x^2}{2!} + \frac{4x^3}{3!} - \frac{5x^4}{4!} + \dots \pm \frac{(i+1)x^i}{i!} \mp \dots$	xe^{-x} -	$-e^{-x}+1$	
6		$R V_0 Y_0$	Массивы	
	$y_i = \frac{\pi}{2} \sin \frac{\pi}{2} x_i - 0.5 \cos \frac{x_i}{3}$	Массив X		
		$i=1 \div 10$	1, 7.	
	$y_i + x_i \sqrt{1 + 0.5 \sin x_i}$, $ecnu y_i > 0.5$	1.10		
	$\upsilon_{i} = \begin{cases} y_{i} + x_{i} \sqrt{1 + 0.5 \sin x_{i}}, ecnu \ y_{i} > 0.5 \\ 3\ln(1 + e^{y_{i}}), ecnu \ y_{i} \leq 0.5 \end{cases}$			
	Считать (V_i , Y_i) координатами точек плоско)-		
	сти. Определить процент (РК) точек, лежащих			
	в круге радиусом R с центром в точке (V_0 , Y_0).			
7		в Массив Х	Массив Ү.	
	массив $Y=(y_1,y_2,,y_{15})$, совинув элементы масси		15	
	ва X влево на 4 позиции. При этом 4 элемента \imath		$S = \sum_{i} y_{i}$	
	начала массива X перемещаются в конец, т.		$S = \sum_{i=1,3,\dots} y_i$	
	$(y_1, y_2,, y_{25}) = (x_5, x_6,, x_{15}, x_1, x_2, x_3, x_4).$			
8	Π реобразовать матрицу $A = (a_{i,j})_{M,N}$ так, чтобы	последний э	лемент каж-	
	дого столбца был заменен минимальным элемен			
	обсо отолоци бол заменен жинижилоном элеменном того же столоци.			

	Вариант №19		
Л.р.	Модель	Исходные	Выводимые
$N_{\overline{0}}$		данные	данные
1	$\int x^3 + a$, $ecnu \ 2 \le x \le 5$	a = 4.6	<i>x</i> , <i>y</i> .
		b = 1.4	,
	$y = \begin{cases} x^2 / (1+b), ecnu - 5 \le x \le -2 \\ c + x^2, \text{ в остальных случаях} \end{cases}$	c = 3.8	
	2 2		
	с + х, в остальных случаях		
	$\int a\sqrt{bc}$, если $c \le 5$		
	$x = \begin{cases} a\sqrt{bc}, & ecnu \ c \le 5 \\ b\sqrt{ac}, & ecnu \ c > 5 \end{cases}$		
2	-	<i>a a</i>	b u coom-
2	Определите действительные корни уравне-	a,c $-4 \le b \le 5$	ветствую-
	$ax^2 + bx + c = 0$	hb=1	1
	Определить количество значений b, дающих	no-1	щие корни
2	мнимые корни.	7	уравнения.
3	$F = 2.72y + 2Z^2 \sin(x + y)$ $x = a^2 - \sqrt{a}$	Z, n	а, F, x, y. Количество
	$\int x^{n+1} - 1$	$a \ge 1.5$	
	$v = \begin{cases} \frac{1}{n+1}, ecnu - n \neq -1 \end{cases}$ Cyumamb F do mex	ha=1.5	вычислен- ных <i>F</i> .
	$y = \begin{cases} \frac{x^{n+1} - 1}{n+1}, ecnu - n \neq -1 \\ \ln x, ecnu - n = -1 \end{cases}$ Cumamb F do mex		Hbl λ I' .
	$\lim_{n \to \infty} x, e \in \mathcal{U}_n = -1$		
4	пор, пока F остаётся меньше 100.	10.2	
4	$z = \begin{cases} \frac{a}{\sqrt{x^2 + a^2}} - bx, ecnu \ x > a \\ \frac{a}{\sqrt{x^2 + a^2}} + \frac{b}{x}, ecnu \ x \le a \end{cases}$	a=10.3	
	$\int \sqrt{x^2 + a^2}$	$0 \le b \le 1.5$	1
	$\begin{vmatrix} z = \\ a & b \end{vmatrix}$	hb=0.5	<i>b, x, z</i>
	$\left \frac{1}{\sqrt{x^2 + x^2}} + \frac{1}{x}, ecnu \right x \le a$	$1 \le x \le 3$	
	$(\sqrt{x} + a)^{-x}$	hx=0.5	
5	$x^{2} - \frac{1}{6}x^{3} + \frac{1 \cdot 3}{6 \cdot 8}x^{4} - \frac{1 \cdot 3 \cdot 5}{6 \cdot 8 \cdot 10}x^{5} + \dots \pm \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2i - 3)}{6 \cdot 8 \cdot 10 \cdot \dots \cdot (2i + 2)}x^{i+1} \mp \dots$		ная формула
	0 0 0 0 10 (2: +2)	$\frac{8}{2}\sqrt{1+x}$	$(-1)^3 - 1 - 4x$
6	(1	Массив Х	Массивы А,
	$\left \frac{1}{2\sqrt{1 + (0.1x_i - 1.5)}}, ecnu \right x_i \ge 0.5$	$0 \le x_i \le 12$	B.
	$ a_i = \sqrt[3]{x_i(e^{x_i x_i} + 1.5)}$	$hx_i=2$	Порядковый
	$a_{i} = \begin{cases} \frac{1}{\sqrt[3]{x_{i}}(e^{0.1x_{i}} + 1.5)}, & ecnu \ x_{i} \ge 0.5\\ 1.8\sqrt{ x_{i} + 1} + e^{0.1x_{i}}, & ecnu \ x_{i} < 0.5 \end{cases}$		номер N эл-
			липса с ма-
	$b_i = \sin \pi a_i$		ксимальной
	Считать значения элементов массива А и В		площадью.
	длинами полуосей эллипса a и b. $S=\pi$ ab	M W	Maria
7	Записать положительные элементы массива	Массив Х	Массив Ү.
	$X=(x_1,x_2,,x_N)$ подряд в массив $Y=(y_1,y_2,,y_k)$.		k, max
	Определить (k) — количество положительных		
	элементов, найти (тах) — максимальный эле-		
0	мент массива Ү и его номер.		l raguar de sas
8	Все элементы матрицы $C=(c_{ij})_{N,N}$, расположен		
	нали преобразовать, умножив их на минимальный элемент матрицы С.		

	Молону	Иомолито	Dryparing
Л.р. №	Модель	Исходные	Выводимые
-	(2	данные	данные
1	$1+x+x^2$, $ecnu \ x \ge 5$	c=2.5	<i>x</i> , <i>y</i> .
	$y = \begin{cases} 1 + x, ecnu - 5 < x < 5 \ x = \end{cases}$	d=1.9	
	$y = \begin{cases} 1 + x + x^2, ecnu \ x \ge 5 \\ 1 + x, ecnu \ -5 < x < 5 \ x = \begin{cases} \sqrt{c + 0.7}, ecnu \ c \le d \\ d - 0.5, ecnu \ c > d \end{cases}$		
2	$\left[\sin \ln x , ecnu x < 0 \right]$	<i>3</i> ≤ <i>Z</i> ≤ 12	Z, x, y.
	$y = \begin{cases} \sin \ln x , & ecnu \ x < 0 \\ \sqrt[3]{x} + e^{-x}, & ecnu \ x \ge 0 \end{cases} \qquad x = 2tg^2 Z + \sqrt{Z}$	hZ = 0.75	-
	Количество положительных значений у.		
3		Z,a	b, x, y, C, Q.
	$y = \begin{cases} \sqrt{x^2 + 1}, ecnu \ x < 0 \\ x, ecnu \ x = 0 \end{cases} x = aZ^2 + \sin(Z + \frac{\pi Z}{3b})$	$b \le 4$	Количество
	$y = \begin{cases} x & , ecnu \ x = 0 \end{cases} x = aZ^2 + \sin(Z + \frac{1}{3h})$	hb = -0.1	слагаемых в
	$\sin^2 x, ecnu \ x > 0$		сумме.
	$C = 3.43y + 2b^3 \ln(b^3 - b), Q = \sum C$		
	Считать C до тех пор, пока под знаком лога-		
	$pu\phi$ ма появится число ≤ 0 .		
4	$\int ax^2 + b$	<i>a</i> , <i>c</i>	
	$\frac{1}{cx+\sqrt{x+100}}$, echu $x \ge 0$	$1 \le b \le 3$;	
	$z = \begin{cases} cx + \sqrt{x + 100} & x = (i-a)/i \\ ax^2 - b & x = (i-a)/i \end{cases}$	hb = 1	<i>b</i> , <i>i</i> , <i>x</i> , <i>z</i>
	$z = \begin{cases} \frac{ax^2 + b}{cx + \sqrt{x + 100}}, ecnu \ x \ge 0\\ \frac{ax^2 - b}{1 + cx + \sqrt{x + 100}}, ecnu \ x < 0 \end{cases}$	$1 \le i \le 3;$ $hi=1.5$	
5		Контрольн	ая формула
	$\frac{x(2-x)}{2!} + \frac{x^5(6-x)}{6!} + \frac{x^9(10-x)}{10!} + \dots + \frac{x^{4i-3}(4i-2-x)}{(4i-2)!} + \dots$	$\sin x + c$	$\cos x - e^{-x}$
	2		
6	$b_i = \sqrt[4]{a_i^2 + 1} + \sqrt[3]{a_i^2 + 1}$	Массив А	Массивы В,
	•	$0.4 \le a_i \le 1.6$	С. Порядко-
	$ a_i < 5$	$ha_i=0.2$	вые номера
	$c_{i} = \begin{cases} 2e^{0.5a_{i}}, ecnu a_{i} < 5\\ 2\pi \sin \pi a_{i} + a_{i}, ecnu a_{i} \ge 5 \end{cases}$		уравнений,
	Считать a_i , b_i , c_i коэффициентами квадрат-		имеющих
	ного уравнения $ax^2+bx+c=0$.		комплекс-
7	Записать элементы массива $x = (x_1, x_2,, x_{15})$ с	Массив х	ные корни. Массив Y.
'	четными индексами подряд в массив $Y = \{x_1, x_2,, x_{15}\}$	Muccub x	k, min
	$(y_1, y_2,, y_k)$. Здесь (k) — количество четных		,
	элементов. Найти (тіп) – минимальный по		
	модулю элемент массива Y и его номер.		
8	B заданной матрице $A = (a_{i,j})_{M,N}$ найти нулево	й элемент с	наибольшим
	значением индекса і и все элементы столбц		
	этот элемент, обнулить. Если в матрице нет нулевых элементов, отпе-		
	чатать соответствующее сообщение.		

Л.р.	Модель	Исходные	Выводимые
№		данные	данные
1	$z = \begin{cases} x + y, ecnu \ xy < a \\ xy, ecnu \ a \le xy \le b \ y = \begin{cases} ax/b, ecnu \ x < 3 \\ ab/x, ecnu \ x \ge 3 \end{cases}$	a=1.5 $b=1.9$ $d=2.3$	z, y.
2	$f = y^{2} + x$ $y = \begin{cases} 1.7 + b/\sin^{2} x, ecnu \ x < 3 \\ 8.5x - b, ecnu \ x \ge 3 \end{cases}$	$ b $ $ 0 \le x \le 5 $ $ hx = 0.5 $	x, y, f количество f>0 u f<0
3	$Q = 2.45 \ln(a^3 - \sin(ax))$ $W = \prod Q$ Считать Q до тех пор, пока выражение под знаком логарифма >0 .	$ \begin{array}{c} x, \\ a \le 4 \\ ha = -0.5 \end{array} $	а, Q, W. Количество сомножи- телей в W.
4	$z = \begin{cases} ax + \frac{b}{\sqrt{x}} - cx^{2}, ecnu \ x \ge 500 \\ a + \frac{b}{\sqrt{x}} - cx^{2}, ecnu \ x < 500 \end{cases} $ $x = 100 \cdot n$	$b, c,$ $1 \le n \le 6$ $2 \le a \le 3.5$ $hn = 1,$ $ha = 0.5$	n, a, x, z
5	$x^{3}\left(\frac{1}{1!} + \frac{1}{3!}\right) - x^{5}\left(\frac{1}{2!} + \frac{1}{3!}\right) + x^{7}\left(\frac{1}{3!} + \frac{1}{7!}\right) - \dots \pm x^{2i+1}\left(\frac{1}{i!} + \frac{1}{(2i+1)!}\right) \mp \dots$	Контрольная формула $2x - xe^{-x^2} - \sin x$	
6	$y_{i} = \begin{cases} \ln \frac{1}{2 + 2x_{i} + x_{i}^{2}}, ecnu - 1.5 \leq x_{i} \leq 0 \\ arctg \ x_{i}, ecnu \ x_{i} > 0 \\ x_{i}^{2}, ecnu \ x_{i} < -1.5 \end{cases}$ Найти индекс элемента, наиболее близкого по значению к ср. геометрическому (P) массива	Maccuв X i=I÷N	$Maccus Y.$ $P = N \prod_{i=1}^{N} y_i$
7	Y . Записать семь первых положительных элементов массива $x=(x_1,x_2,,x_N)$ подряд в массив $Y=(y_1,y_2,,y_7)$. Найти (max) — максимальный элемент массива Y и его номер.	Массив х	Массив Y. тах
8	Для квадратной матрицы $F = (f_{ij})_{N,N}$ найти отношение суммы элементов, расположенных ниже главной диагонали, к сумме элементов, расположенных выше главной диагонали, предусмотрев соответствующее сообщение, если последняя сумма (делитель) окажется равной 0 .		

	Бариант №22 Модель	Исходные	Виролими
Л.р. №	Модель		Выводимые
-	(2 2	данные	данные
1	$\left(x^2 + y^2, ecnu \ y > x + 1\right)$	a=3.4	<i>z, y</i> .
	$x = \int_{x^2 \ln y} e^{2\pi u} y - x + 1 y = \int_{x^2 \ln y} x + a, \ e^{2\pi u} x = a$	x=1.4	
	$x = \int_{0}^{x} x^{-1} x^{-1} y = \int_{0}^{x} x/a, \ e c \pi u \ x \neq a$		
	$z = \begin{cases} x + y, & ecnu \ y > x + 1 \\ x^{2} \ln y, & ecnu \ y = x + 1 \end{cases} y = \begin{cases} x + a, & ecnu \ x = a \\ x/a, & ecnu \ x \neq a \end{cases}$		
2	$\left[\sin \ln x \right] = e \cos x < 0$	<i>3</i> ≤ <i>Z</i> ≤ 12	Z, x, y.
_	$y = \begin{cases} \sin \ln x , & ecnu \ x < 0 \\ \sqrt[3]{x} + e^{-x}, & ecnu \ x \ge 0 \end{cases} x = 2tg^2 Z + \sqrt{Z}$	hZ = 0.75	<u> Количество</u>
	$\sqrt[3]{x+e^{-x}}$, если $x \ge 0$		положи-
	Определить произведение отрицательных		тельных
	значений у.		значений у.
3	$y = \ln 2x - x^2$ $Z = \frac{\sum y}{N}$	<i>x</i> ≤ <i>10</i>	x, y, Z.
	$y = \ln 2x - x^2 \qquad Z = \frac{2}{N}$	hx = -0.5	N – количе -
	Считать у до тех пор, пока выражение под		ство сла-
	знаком логарифма >0 .		гаемых в
	· · · · · · · · · · · · · · · · · · ·		сумме.
4	$\int \frac{1}{a+a} b$	$0 \le a \le 0.3$	
	$z = \begin{cases} \sqrt{a+x} - \frac{b}{1+ax}, ecnu \ x \le 10 \\ \sqrt{x} + \frac{b}{1+ax^2 + c}, ecnu \ x > 10 \end{cases}$ $x = 3i^2 + sin \ i$	$1 \le i \le 7;$	
	$z = \begin{cases} x = 3i^{2} + \sin i \end{cases}$	b, c	a, i, x, y
	$\sqrt{x + \frac{1}{1 + ax^2 + c}}, ecnu x > 10$	ha=0.05;	
		hi = 2	
5	$1 - \frac{5}{2}x + \frac{5 \cdot 7}{2 \cdot 4}x^2 - \frac{5 \cdot 7 \cdot 9}{2 \cdot 4 \cdot 6}x^3 + \dots \pm \frac{5 \cdot 7 \cdot 9 \cdot \dots \cdot (2i+3)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2i}x^i \mp \dots$		иая формула
	2 2 4 2 4 0 2 4 0 21	$1/\sqrt{(1-x)^2}$	$(1+x)^5$
6	$4x_i^{0.6} - 2\sqrt{x_i}, ecnu 1 \le x_i \le 10$	Массив Х	Массив Ү.
		$0.2 \le x_i \le 0.8$	A.
	$y_i = \begin{cases} 0.5x_i + 1, & ecnu \\ x_i > 10 \end{cases}$	$hx_i = 0.1$	
	$\left[100x_{i}^{2}-5e^{x_{i}},\ ecлu\ x_{i}<1\right]$		
	Среднее арифметическое (А) массива Ү и ко-		
	личество $y_i > A$.		
7	Записать элементы массива $X=(x_1,x_2,,x_N)$,	Массив Х	Массив Ү.
	удовлетворяющие условию x_i \in [1.5;2.5] , nod-		k, min
	ряд в массив $Y=(y_1,y_2,,y_k)$. Определить (k) —		
	количество таких элементов. Найти (min) –		
	минимальный элемент массива Y и его номер.		
8	Найти среднее арифметическое в каждом ст		
	и найти номер столбца с максимальным значе	нием среднег	о арифмети-
	ческого.		

Л.р. Ne Модель Исходные данные данные Выводимые данные данные 1 $z = \begin{cases} ax + bx, & ecnu x < 1 \\ ax / by, & ecnu 1 \le x \le 9 \\ ax - by, & ecnu x > 9 \end{cases}$ $z = x^2 + a/x$ $z = x^2 + a/x$ $z = x^2 + a/x$ 2 $z = \begin{cases} x^2 + a/x, & ecnu x \le 1 \\ a \cdot tg^2x, & ecnu x > 1 \\ y = \sin^2(Z + x) + \sqrt{Z - x} \end{cases}$ $z = x^2 + a/x$ $z = x^2 + a/x$ $z = x^2 + a/x$ 3 $z = x^2 + a/x$		Вариант №23		l p
		Модель	Исходные	Выводимые
$z = \begin{cases} ax/by, ecnu \ 1 \le x \le 9 \ y = \begin{cases} \sqrt{ab}, ecnu \ a \le b \\ \sqrt{a+b}, ecnu \ a > b \end{cases} \end{cases} b=2.4 \\ x=4.1 \end{cases}$ $z = \begin{cases} x^2 + a/x, ecnu \ x \le 1 \\ a \cdot tg^2x, ecnu \ x > 1 \\ y = \sin^2(Z+x) + \sqrt{Z-x} \end{cases} \qquad \begin{cases} a \times Z, y \in X, x \in X, y \in X, x \in X,$				данные
	1	$\int ax + bx$, $ecnu x < 1$	a = 3.2	z, y.
		$z = \begin{cases} ax/by, ecnu \ 1 \le x \le 9 \end{cases}$ $y = \begin{cases} \sqrt{ab}, ecnu \ a \le b \end{cases}$	b = 2.4	
		$\left \begin{array}{c} \left \begin{array}{c} \left \left \sqrt{a+b}, ecnu a > b \right \end{array} \right \right $	x=4.1	
$Z = \begin{cases} x + a/x, \text{ сели } x \le 1 \\ a \cdot tg^2 x, \text{ если } x > 1 \end{cases}$ $y = \sin^2(Z + x) + \sqrt{Z - x}$ $Z = \{a,b\}.$ $A = \sin^2 b + \cos(b - \pi) + 1 F = \sum A \text{ Количество } u \text{ сумма} Z \in [a,b].$ $Z = \{a\sqrt{1 + \frac{x + 5}{6}}, \text{ если } \frac{x + 5}{6} \ge 0.5 x = 1 + 0.5i \text{ hb} = 0.1 \end{cases}$ $A = \sin^2 b + \cos(b - \pi) + 1 F = \sum A \text{ Количество } b = 0.1 \text{ Konuvectso } b = 0.1 Konuvectso$		$(ux - by, \epsilon c \pi u x > 9)$		
$Z = \begin{cases} x + a/x, \text{ сели } x \le 1 \\ a \cdot tg^2 x, \text{ если } x > 1 \end{cases}$ $y = \sin^2(Z + x) + \sqrt{Z - x}$ $Z = \{a,b\}.$ $A = \sin^2 b + \cos(b - \pi) + 1 F = \sum A \text{ Количество } u \text{ сумма} Z \in [a,b].$ $Z = \{a\sqrt{1 + \frac{x + 5}{6}}, \text{ если } \frac{x + 5}{6} \ge 0.5 x = 1 + 0.5i \text{ hb} = 0.1 \end{cases}$ $A = \sin^2 b + \cos(b - \pi) + 1 F = \sum A \text{ Количество } b = 0.1 \text{ Konuvectso } b = 0.1 Konuvectso$		(2 ,	~	7
$y = \sin^{2}(Z + x) + \sqrt{Z - x}$ $Z \in [a,b].$ 3	2	$Z = \begin{cases} x^2 + a/x, ecnu \ x \le 1 \end{cases}$		
$y = \sin^{2}(Z + x) + \sqrt{Z - x}$ $Z \in [a,b].$ 3		$a \cdot tg^2 x$, $ecnu x > 1$		
$ \begin{array}{c} \textbf{3} & A = \sin^2 b + \cos(b - \pi) + 1 & F = \sum A \\ C \text{ Считать } F \text{ до тех пор, пока } F \text{ останется} \\ \text{меньше } 10. & b \geq 0 \\ & \\ \textbf{4} & \\ z = \begin{cases} a \sqrt{1 + \frac{x+5}{6}}, ecnu \frac{x+5}{6} \geq 0.5 & x = 1+0.5i \\ a \left(1 + \frac{x+5}{6} - \frac{(x+5)^2}{8i^2}\right), ecnu \frac{x+5}{6} < 0.5 \end{cases} & \begin{array}{c} 4 \leq i \leq 14; \\ hi = 5 \\ -2 \leq a \leq 1; \\ ha = 1 \end{array} & i, a, x, z \\ \\ \textbf{5} & \\ 1 - \frac{3x^2}{2!} + \frac{5x^4}{4!} - \frac{7x^6}{6!} + \dots \pm \frac{(2i+1)x^{2i}}{(2i)!} \mp \dots & \begin{array}{c} Kohmponhar \phiopmyna \\ \cos x - x \sin x \end{array} \\ \\ \textbf{6} & \\ v_i = \begin{cases} t_i - \frac{0.2t_i}{1+t_i}, & ecnu t_i > 0 \\ \frac{\pi}{2} \sin t_i \cos(1+t_i), & ecnu t_i \leq 0 \\ t_i = \sin(x_i^2 - \pi x_i) & y = \frac{v_1 + v_4 + v_9 + v_{16}}{v_1 + v_3 + \dots + v_{15}} \end{cases} & \begin{array}{c} Maccus X \\ i = 1 + 16 \end{array} & \begin{array}{c} Maccus X \\ i = 1 + 16 \end{array} & \begin{array}{c} Maccus X \\ 3havehue y. \end{cases} \\ \\ \textbf{7} & \begin{array}{c} 3anucamb & \text{ элементы маccus } X = (x_1, x_2, \dots, x_N) & s \\ of pamhom & \text{ порядке } s \text{ мaccus } Y = (y_1, y_2, \dots, y_N). \end{array} & \begin{array}{c} Maccus X \\ max \end{array} & \begin{array}{c} Maccus X \\ max \end{array} & \begin{array}{c} Maccus X \\ max \end{array} \end{cases} & \begin{array}{c} Maccus X \\ max \end{array} \end{cases} \\ \end{array}$		· ·	$n\lambda$ -0.1	1
Считать F до тех пор, пока F останется меньше 10 .		$y = \sin^{-}(Z + x) + \sqrt{Z - x}$		
Считать F оо тех пор, пока F останется меньше 10. $ z = \begin{cases} a\sqrt{1 + \frac{x+5}{6}}, ecnu \frac{x+5}{6} \ge 0.5 & x = 1+0.5i \\ a\left(1 + \frac{x+5}{6} - \frac{(x+5)^2}{8i^2}\right), ecnu \frac{x+5}{6} < 0.5 \end{cases} $ $ \frac{4 \le i \le 14}{hi = 5}, i, a, x, z $ $ 4$	3	$A = \sin^2 b + \cos(b - \pi) + 1 \qquad F = \sum A$		
меньше 10. $ z = \begin{cases} a\sqrt{1 + \frac{x+5}{6}}, ecnu\frac{x+5}{6} \ge 0.5 x = 1 + 0.5i \\ a\left(1 + \frac{x+5}{6} - \frac{(x+5)^2}{8i^2}\right), ecnu\frac{x+5}{6} < 0.5 \end{cases} $ $ 1 - \frac{3x^2}{2!} + \frac{5x^4}{4!} - \frac{7x^6}{6!} + \dots \pm \frac{(2i+1)x^{2i}}{(2i)!} \mp \dots $ $ Kohmponehas формула \\ cos x - x sin x \end{cases} $ $ 6 $ $ v_i = \begin{cases} t_i - \frac{0.2t_i}{1+t_i}, & ecnu t_i > 0 \\ \frac{\pi}{2} \sin t_i \cos(1+t_i), & ecnu t_i \le 0 \end{cases} $ $ t_i = \sin(x_i^2 - \pi x_i) y = \frac{v_1 + v_4 + v_9 + v_{16}}{v_1 + v_3 + \dots + v_{15}} $ $ 7 $ $ 3anucamb $ Элементы массива $X = (x_1, x_2, \dots, x_N)$ в массив X массив Y		Считать F до тех пор, пока F останется	hb=0.1	
$ z = \begin{cases} a\sqrt{1 + \frac{x+5}{6}}, ecnu \frac{x+5}{6} \ge 0.5 x = 1 + 0.5i \\ a\left(1 + \frac{x+5}{6} - \frac{(x+5)^2}{8i^2}\right), ecnu \frac{x+5}{6} < 0.5 \end{cases} $ $ 1 - \frac{3x^2}{2!} + \frac{5x^4}{4!} - \frac{7x^6}{6!} + \dots \pm \frac{(2i+1)x^{2i}}{(2i)!} \mp \dots $ $ v_i = \begin{cases} t_i - \frac{0.2t_i}{1+t_i}, & ecnu t_i > 0 \\ \frac{\pi}{2} \sin t_i \cos(1+t_i), & ecnu t_i \le 0 \end{cases} $ $ t_i = \sin(x_i^2 - \pi x_i) y = \frac{v_1 + v_4 + v_9 + v_{16}}{v_1 + v_3 + \dots + v_{15}} $ $ 7 3anucamb 3\pi emelmib maccuba X = (x_1, x_2, \dots, x_N) b maccuba X maccuba Y max \end{cases} $ $ Maccuba X i = 1 \div 16 $ $ V 3hauehue y. $		меньше 10.		_
	1		_	Hblx A.
	4	$\left \frac{1}{x} \right + \frac{x+5}{x+5} e^{-x} = \frac{x+5}{x+5} > 0.5 x = 1+0.5i$	· ·	
		$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $		
		$z = \begin{cases} (x+5)^2 \\ (x+5)^2 \end{cases}$		i, a, x, z
		$ a 1 + \frac{a+b}{6} - \frac{(a+b)}{8i^2} , ecnu(\frac{a+b}{6}) < 0.5$	na=1	
		/		
	5	$1 3x^2 5x^4 7x^6 (2i+1)x^{2i}$	-	
		$1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \dots \pm \frac{1}{(2i)!} + \dots$	$\cos x$ -	$-x\sin x$
	6		Массив Х	Массивы Т.
		$\left t_{i}-\frac{0.2v_{i}}{1+t}, ecnu\right t_{i}>0$		· ·
		$v_i = \begin{cases} 1 + t_i \end{cases}$		Значение у.
$t_i = \sin(x_i^2 - \pi x_i)$ $y = \frac{v_1 + v_4 + v_9 + v_{16}}{v_1 + v_3 + + v_{15}}$ 7 Записать элементы массива $X = (x_1, x_2,, x_N)$ в Массив X Массив Y . обратном порядке в массив $Y = (y_1, y_2,, y_N)$.		$\frac{\pi}{-\sin t \cdot \cos(1+t)}$, $ec\pi u = t < 0$		
7 Записать элементы массива $X = (x_1, x_2,, x_N)$ в Массив X Массив Y обратном порядке в массив $Y = (y_1, y_2,, y_N)$.		$\left 2^{2\pi i \eta} \right ^{2\pi i \eta} = 0$		
7 Записать элементы массива $X = (x_1, x_2,, x_N)$ в Массив X Массив Y обратном порядке в массив $Y = (y_1, y_2,, y_N)$.		$\int_{t} -\sin(x^2 - \pi x) v_1 = v_1 + v_4 + v_9 + v_{16}$		
7 Записать элементы массива $X = (x_1, x_2,, x_N)$ в Массив X Массив Y обратном порядке в массив $Y = (y_1, y_2,, y_N)$.		$v_i - \sin(x_i - ix_i)$ $y - \frac{1}{v_1 + v_3 + + v_{15}}$		
обратном порядке в массив $Y = (y_1, y_2,, y_N)$.	7		Массив Х	Массив Ү.
				max
Найти (тах) – максимальный элемент масси-				
ва Ү и его номер.				
8 Получить матрицу-строку А, каждый элемент которой равен среднему	8	Получить матрицу-строку А, каждый элемент	п которой ра	авен среднему
арифметическому значений элементов соответствующего столбца		арифметическому значений элементов соот	пветствующ	его столбца
матрицы B , размерностью 8×9 .		матрицы В, размерностью 8×9.		

Л.р.	Модель	Исходные	Выводимые
№		данные	данные
1	$ax + by$, если $a \le x \le b$	a=2.7	<i>z</i> , <i>y</i> .
	$z = \left\{ \ln(bx) + ay, ecnu - b \le x \le -a \right\}$	b=4.3 x=3.1	
	xy+1, в остальных случаях	$\lambda = J.1$	
	$\left(a^2/b^2\right) e c \pi u a \neq b$		
	$y = \begin{cases} a^2/b^2, & ecnu \ a \neq b \\ ab - 1, & ecnu \ a = b \end{cases}$		
2	$\sqrt{x}\sin x, ecnu x > 2.3$	a	<i>Z</i> , <i>y</i> , <i>x</i> .
_	$\sqrt{x} \sin x, ec. \pi u x > 2.5$	$-\pi \le Z \le \pi$	_, ,,
	$y = \begin{cases} \sqrt{x} + x, & ecnu \ x = 2.3 \end{cases} \qquad x = a + \sin^2 Z$ $e^x - 1/x, & ecnu \ x < 2.3 \end{cases}$	$hz = 0.2\pi$	
	2		
_	Произведение y , значение которы $x > (x-y)^2$		
3	$Z = ax^2 + bx + c \qquad N = M!$	Q, a , b , c	x, Z, N,
	Считать Z до тех пор, пока Z станет боль- ше O .	$x \ge 0$ $hx = 0.2$	
	ше Q . M – количество вычисленных Z .	120 0.2	
4	Nonvection on the second Ex		
	$\left \left(a^2 - b \right) 1 + \frac{x}{256} \right , ecnu \ x < 5$	b=3.3	
	$z = \begin{cases} 230 \end{cases} \qquad x = 2n + 1$	$1 \le a \le 2.5$	a, n, x, z
	$\frac{a^2-b}{\sqrt{2}}$, если $x \ge 5$	$ 2 \le n \le 5 \\ ha = 0.5 $, , ,
	$z = \begin{cases} \left(a^2 - b\left(1 + \frac{x^2}{256}\right), ecnu \ x < 5 \\ \frac{a^2 - b}{\sqrt{1 + x^2/125}}, ecnu \ x \ge 5 \end{cases}$	hn=1.5	
5	x^2 x^4 x^6 x^{2i} _	Контрольн	ая формула
	$\frac{x^2}{1 \cdot (2 \cdot 1 - 1)} - \frac{x^4}{2 \cdot (2 \cdot 2 - 1)} + \frac{x^6}{3 \cdot (2 \cdot 3 - 1)} - \dots \pm \frac{x^{2i}}{i(2i - 1)} \mp \dots$	$2x \cdot arctg(x)$	$-2\ln\sqrt{1+x^2}$
6	$\int_{2}^{2} \sqrt{2 v} \sin \frac{\pi}{2} v$		Массив М.
	$\int \frac{\sqrt{-y_1^2 - 2y_1^2}}{y_1^2}, ec\pi u y_i > 1.5$	$2.2 \le y_i \le 3.8$ $hy_i = 0.1$	11роцент >0, <0 и =0
	$y_i + e^{y_i}$	ny_l 0.1	элементов
	$m_{i} = \begin{cases} \frac{\sqrt{2y_{i}} \sin \frac{\pi}{2} y_{i}}{y_{i} + e^{y_{i}}}, ecnu & y_{i} > 1.5\\ 2y_{i} - \sqrt{e^{y_{i}}}, ecnu & y_{i} \leq 1.5 \end{cases}$		массива М.
7	Записать элементы массива $X=(x_1,x_2,,x_{16})$ с	Массив Х	Массив Ү.
	индексами 1, 4, 9, 16 подряд в массив		min
	$Y=(y_1,y_2,y_3,y_4).$		
	Найти (min) — минимальный по модулю эле- мент массива Y и его номер		
8	B заданной матрице $B = (b_{ij})_{6,7}$. Найти элемент b	b _{ii} <5 с наибо	льшим значе-
	нием индекса ј. Все элементы столбца, в кот		
	элемент (кроме него) сделать равными 1.		

-	Вариант №25		-
Л.р.	Модель	Исходные	Выводимые
No		данные	данные
1	$a + \sqrt{cx}$, $ec\pi u x < 3$	a=3.7 b=2.9	<i>x</i> , <i>y</i> .
	$y = \begin{cases} b + \sin \pi x, & ecnu \ 3 \le x \le 5 \end{cases}$	c=0.3	
	$y = \begin{cases} b + \sin \pi x, & ecnu \ 3 \le x \le 5 \\ c - \cos ax, & ecnu \ x > 5 \end{cases}$	d=4.5	
	$c - \int c + a/b$, если $b \le a - 1$		
	$x = \begin{cases} c + a/b, & ecnu \ b \le a - 1 \\ c - ab, & ecnu \ b > a - 1 \end{cases}$		
2	$F = \begin{cases} T/S, ecnu S + T > 2\\ T - S, ecnu S + T \le 2 \end{cases}$	<i>-</i> 5 ≤ <i>q</i> ≤ 5	q, S, T, F.
	$T - $ $T - S$, если $S + T \le 2$	hq = 0.5	Сумма и ко-
	$T = S \cdot q - 1/(q-1); S = 1/(q^2+1) - 7q$		личество F.
3	$F = b\sqrt[3]{0.1 + x^2} - \frac{3}{\sqrt{b + x^2}}$	A, b	x, F.
	$\sqrt{b+x^2}$	$x \ge 0$	Произведе-
	Считать до тех пор, пока значение F не пре-	hx=0.5	ние первых
	высит A .		семи вы-
			численных F.
4		$-5 \le x \le 5$,	
	$\int 0.7 - \sqrt{x+4}, ecnu \ y \ge 0$	hx = 1	,
	$z = \begin{cases} 0.7 - \sqrt{x + 4}, ecnu \ y \ge 0 \\ \ln x + 0.3, ecnu \ y < 0 \end{cases} $ $y = te^{-x} + 5x$	$3 \le t \le 6$,	x, t, y, z
		ht = 0.5	
5	$2x^6 4x^{10} 6x^{14} 8x^{18} 2i \cdot x^{4i+2}$	Контрольн	ная формула
	$\frac{2x^6}{3!} - \frac{4x^{10}}{5!} + \frac{6x^{14}}{7!} - \frac{8x^{18}}{9!} + \dots \pm \frac{2i \cdot x^{4i+2}}{(2i+1)!} \mp \dots$	$\sin x^2$ –	$x^2 \cos x^2$
6	$x_i = \cos^2 z_i^2 - \sin^2 z_i$	Массив Z	Массивы Х,
		$0.2 \le z_i \le 2.4$	<i>Y</i> .
	$v_{i} = \begin{cases} 1 + e^{\sqrt{0.5}x_{i}+5}, ec\pi u \ x_{i} \ge 0 \end{cases}$	$hz_i = 0.2$	
	$y_i = \begin{cases} 1 + e^{\sqrt{0.5x_i + 5}}, & ecnu \ x_i \ge 0 \\ 1 + 0.6x_i, & ecnu \ x_i < 0 \end{cases}$		
	(x_i, y_i) -координаты точек на плоскости.		
	Определить количество точек, расположен-		
	ных в 1 и 3 квадрантах плоскости ХОҮ.		
7	Записать элементы массива $X=(x_1,x_2,,x_{10})$ в	Массив Х	Массив Ү.
	массив $Y=(y_1,y_2,,y_{10})$, сдвинув элементы		max
	массива Х вправо на 2 позиции. При этом 2		
	элемента из конца массива Х перемещаются		
	θ начало, т.е. $(y_1, y_2,, y_{10}) = (x_9, x_{10}, x_1, x_2, x_8)$.		
	Найти (тах) — максимальный по модулю эле- мент массива Y и его номер.		
8	B заданной матрице $C = (c_{ij})_{M,N}$ определить сул	I ИМУ И КОЛИЧР	
	_ · · · · · · · · · · · · · · · · · · ·	-	
	тов, лежащих ниже главной диагонали и принадлежащих отрезку $[a,b]$.		