МАТЕМАТИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ ОБСЛЕДОВАНИЯ ЭЛЕКТРОДВИГАТЕЛЕЙ СОБСТВЕННЫХ НУЖД ТЭС

© 1999, Н.В.Гребченко, Д.В.Полковниченко

ДонГТУ, кафедра ЭС

У статті приведений опис програми обробки експериментальних даних, що дозволяє підвищити точність виділення діагностичних параметрів по отриманим у ході прямих вимірів параметрам режиму електродвигуна, і тим самим підвищити достовірність постановки діагнозу про технічний стан електродвигуна.

In the article the description of a handler of experimental data permitting to increase an exactitude of selection of diagnostic parameters on obtained in course of direct measurements, to an obtained of an in of the a course, and by that to increase reliability of statement of the diagnosis about availability index of product of the electric motor is indicated.

В настоящее время оценка состояния электродвигателей (ЭД) собственных нужд (с.н.) в рабочем режиме в основном производится обслуживающим персоналом по показаниям приборов (амперметры, вольтметры, термометры). Естественно, что таким способом можно выявить повреждения только уже на такой стадии их развития, когда показания приборов имеют существенные отклонения от нормальных. При этом во многих случаях степень развития повреждения такова, что параметры режима близки к срабатыванию релейной защиты. Поэтому для повышения чувствительности диагностики ЭД с.н. в рабочих режимах до такой степени, чтобы она выявляла возникновение повреждений на начальной стадии развития, предложено выполнять обработку и анализ записи в цифровом виде фазных токов ЭД и фазных напряжений на секции с.н. Осциллографирование этих величин выполняется без отключения ЭД.

Обработка полученной информации позволяет выявить следующие виды повреждений ЭД [1]:

- витковые замыкания в обмотках статора;
- обрывы и повреждения стержней короткозамкнутых роторов (КЗР);
- обрывы параллельных ветвей фазных обмоток статора.

При возникновении этих повреждений в фазных токах появляются симметричные составляющие обратной последовательности (ОП), а также могут появляться составляющие, частота которых отличается от частоты сети на величину скольжения ЭД.

[©] Гребченко Н.В., Полковниченко Д.В., 1999

Требуемая достоверность результатов диагноза может быть обеспечена за счет применения таких алгоритмов и программ выделения диагностических параметров по полученным в ходе прямых измерений параметрам режима ЭД, которые удовлетворяют требуемой точности.

Для решения указанных задач разработана программа обработки фазных токов и напряжений на ПЭВМ. В основу программы положено определение векторов фазных токов и напряжений по двум выборкам мгновенных значений и вычисление вектора тока ОП по векторам трех фазных токов. Ток фазы B при отсутствии трансформатора тока в этой фазе рассчитывается по токам фаз A и C.

Первичная информация о состоянии ЭД фиксируется в виде непрерывных электрических величин — напряжений и токов, являющихся аналоговыми сигналами. В разработанной системе диагностики для контроля параметров режима работы ЭД используются сигналы, которые фиксируются в дискретные, равноотстоящие моменты времени и получаются путем преобразования аналоговых сигналов в цифровые.

В основу программы положены следующие зависимости:

$$\overline{I_2} = \frac{1}{3} (\overline{I_a} + a^2 \overline{I_b} + a \overline{I_c}),$$

$$\overline{U_2} = \frac{1}{3} (\overline{U_a} + a^2 \overline{U_b} + a \overline{U_c}),$$

где $\overline{I_2}$ - ток ОП;

 $\overline{U_2}\,$ - напряжение ОП;

 $\overline{I_a}, \overline{I_b}, \overline{I_c}, \overline{U_a}, \overline{U_b}, \overline{U_c}$ - векторные значения токов и напряжений фаз;

 $a = e^{j120^0}$ – фазный множитель.

На основании анализа результатов расчетов различными способами произведен выбор алгоритма, обеспечивающего наилучшую точность расчета векторных значений токов и напряжений фаз $\overline{I_a}$, $\overline{I_b}$, $\overline{I_c}$, $\overline{U_a}$, $\overline{U_b}$, $\overline{U_c}$ по их мгновенным значениям $i_a(t)$, $i_b(t)$, $i_c(t)$, $u_a(t)$, $u_b(t)$ и $u_c(t)$. Из рассмотренных наибольшую точность обеспечивает алгоритм определения вектора на основе двух выборок синусоидального сигнала [2]. Согласно этого алгоритма значения векторов $\overline{U_{A,n}} = \overline{U_A}(nT)$, $\overline{U_{B,n}} = \overline{U_B}(nT)$, $\overline{U_{C,n}} = \overline{U_C}(nT)$, соответствующие фазным синусоидальным сигналам, равны при $\beta = \omega_0 T$ [2]:

$$\begin{split} \overline{U_{A,n}} &= \frac{u_A(nt)e^{j\beta} - u_A(nt-T)}{\sin\beta};\\ \overline{U_{B,n}} &= \frac{u_B(nt)e^{j\beta} - u_B(nt-T)}{\sin\beta};\\ \overline{U_{C,n}} &= \frac{u_C(nt)e^{j\beta} - u_C(nt-T)}{\sin\beta}, \end{split}$$

где $u_A(nt)$, $u_B(nt)$, $u_C(nt)$ - последовательность чисел, возникающих в моменты времени $t=nT(-\infty < n < +\infty)$, n - целое число;

Т - период дискретизации (время между двумя соседними выборками);

 $\omega_0 = 2\pi\,f_0\,$ - угловая основная частота;

 ${f}_{0}\,$ - основная (промышленная) частота синусоидальных сигналов.

В электрической системе периодически происходит отклонение частоты сети от номинального значения 50 Гц, а так как в алгоритме используется значение частоты, то для обеспечения точности расчетов необходимо ее правильно определять. При неправильном определении значения частоты сигнала возникает погрешность обработки данных, что приводит к появлению сигнала на выходе программы даже при его отсутствии на входе. Результаты расчета зависимости погрешности алгоритма обработки экспериментальных данных показывают, что неучет реально возможного отклонения частоты дает погрешность в определении тока ОП свыше 0,5 % от номинального тока.

Разработанный алгоритм определения частоты сигнала основан на определении моментов перехода сигнала через нуль и расчете интервалов времени между ними. Точность расчета составляет 0,0002 %.

Вместе с полезным сигналом в канал измерения системы диагностики попадают также и помехи, вызывающие часто значительные погрешности. Способы борьбы с помехами в значительной мере зависят от их спектра, характера исследуемого сигнала и характера помехи [3]. В условиях системы с.н. ТЭС, расположенными там электроустановками, создаются в основном электромагнитные помехи, имеющие частоту больше основной (промышленной) частоты f_0 . Поэтому для выделения полезной информации о техническом состоянии ЭД и отстройки от высокочастотных помех в программе производится цифровая фильтрация контролируемых сигналов. Цифровая фильтрация производится путем вычитания из контролируемого сигнала составляющих высших гармоник:

$$K = \frac{f_c}{f_0} = 1.2 \div 20 \ (\Delta K = 0.01) \ ,$$

где K – кратность гармоники;

 f_{c} – частота высшей гармоники;

 ΔK — шаг расчета.

В качестве одного из основных диагностических параметров используется коэффициент ОП по току

$$K_{2I} = \frac{I_{2\partial e\breve{u}cm}}{I_{1\partial e\breve{u}cm}} 100\%,$$

где $I_{2\text{дейсm}}$ - действующее значение тока ОП;

 $I_{1 \text{дейст}}$ - действующее значение тока прямой последовательности.

При этом несимметрия питающих напряжений может быть оценена коэффициентом ОП по напряжению [4]

$$K_{2U} = \frac{U_{2\partial e\breve{u}cm}}{U_{HOM}} 100\%,$$

где $U_{2\partial e \check{u} cm}$ - действующее значение напряжения ОП;

 $U_{2\mu\rho\rho}$ - номинальное значение междуфазного напряжения.

Рассчитанное по полученным при обследовании ЭД данным значение K_{2I} сравнивается с допустимым значением коэффициента ОП по току для данного ЭД K_{2Ioon} (соответствует повреждению, вызывающему минимальное изменение тока ОП I_2). На основании этого сравнения может быть сделан вывод о наличии повреждения в ЭД и о его характере.

От вида повреждения ЭД зависит также частота тока ОП I_2 . Так при повреждении обмоток статора I_2 имеет частоту основной гармоники f_0 , а при повреждении стержней КЗР I_2 , имеет частоту, определяемую по выражению [5, 6]:

$$f_2 = f_0(1-2S)$$
,

где S — скольжение ЭД.

Исходя из этого, если $K_{2I} > K_{2I\partial on}$, то для определения вида и места повреждения выполняется разложение тока ОП I_2 на составляющие основной гармоники с частотой f_0 и разностный сигнал, который получается после вычитания из сигнала основной гармоники. По величине этих составляющих ставится диагноз о техническом состоянии ЭД в целом и о наличии и месте повреждения (обмотки статора или ротора).

На рис.1 приведен алгоритм обработки экспериментальных данных, получаемых при обследовании ЭД с.н. ТЭС.

Разработанная программа позволяет также выделять из фазных токов третью гармонику, что позволяет использовать в качестве диагностического параметра также пульсации третьей гармоники в фазных величинах тока статора [6].

Правильность работы программы, разработанной в соответствии с приведенным алгоритмом, проверена с помощью математического тестирования. Для этого на вход программы подавались тестовые сигналы, полученные в результате суммирования составляющих прямой последовательности, ОП основной частоты сигнала и сигнала ОП с частотой близкой к основной. Результаты, полученные на выходе программы, сопоставлялись с входными данными, и их анализ подтвердил правильность и высокую точность работы программы.

Для проверки правильности принципов, заложенных в разработанную методику диагностирования, и получения зависимостей диагностических параметров от количества поврежденных стержней КЗР асинхронного электродвигателя (АД) проведена серия экспериментальных исследований на специальном АД. Ротор этого АД модернизирован с целью обеспечения возможности создания обрывов стержней КЗР. Для преобразования аналоговых сигналов (токов и напряжений) в цифровой вид при проведении экспериментальных исследований использовались десятиразрядные АЦП. В течение каждого периода промышленной частоты фиксировалось 20 точек входных сигналов, т.е. период дискретизации составил 1 мсек.

По результатам экспериментальных исследований выполнено сравнение используемого диагностического параметра K_{2I} и пульсаций обобщенного вектора тока статора γ_i [7]. Полученные зависимости, приведенные на рис. 2, показывают, что при одних и тех же условиях относительное содержание тока ОП K_{2I} по величине больше, чем пульсации обобщенного вектора тока статора γ_i . Поэтому K_{2I} можно считать более информативным диагностическим параметром.

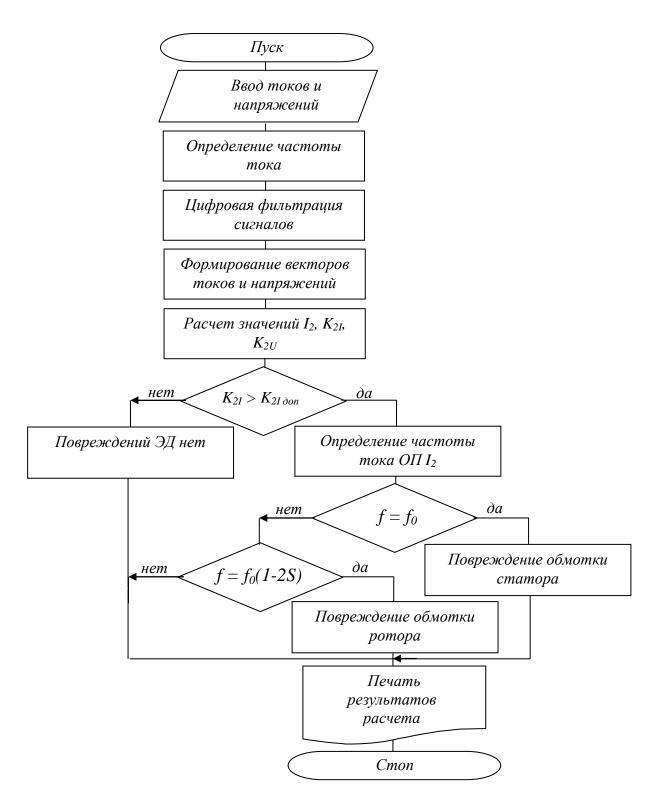


Рис.1. Алгоритм обработки экспериментальных данных.

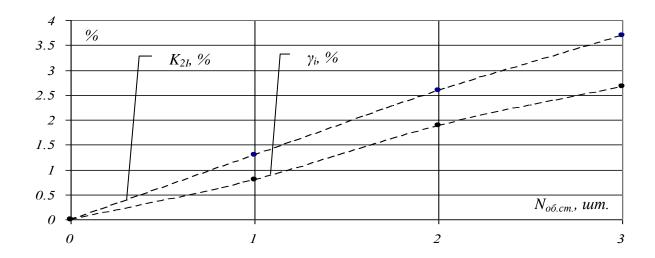


Рис.2. Зависимость диагностических параметров (K_{2I} – коэффициент ОП, γ_i – пульсации обобщенного вектора тока статора) от количества оборванных стержней КЗР АД $N_{oб.cm.}$.

На основании разработанных и проверенных в лабораторных условиях принципов построения системы диагностики проведено обследование ЭД с.н. на одной из ТЭС ГАЭК Донбассэнерго. При этом блок 300 МВт находился в работе и нес нагрузку, близкую к номинальной. Обследуемые двигатели не отключались. Подключение в токовые цепи этих ЭД выполнялось на клеммных рядах в ячейках соответствующих выключателей. Результаты обработки полученных данных приведены в табл. 1.

Таблица I Относительное содержание тока ОП K_{2I} в опытном токе статора ЭД

Обследуемый двигатель	Коэффициент ОП по току K_{2I} , $\%$	Коэффициент ОП по напряжению K_{2U} , %
Дымосос	1,5	0,9
ДРГ	1,9	
ПЭН	2,5	
ШБМ	3,7	

На основании сравнения полученных результатов с допустимыми значениями K_{2l} , рассчитанными на математической модели по каталожным данным ЭД, сделан вывод об исправности всех обследованных ЭД. Полученные значения тока ОП могут быть использованы при последующей диагностике этих ЭД, а также им подобных.

Выводы

1. Предложена методика диагностики ЭД и программа обработки фазных токов и напряжений, осциллографируемых при обследовании ЭД с.н. ТЭС с целью выявления повреждений ЭД. Правильность и точность работы программы проверена с помощью

математического тестирования и путем сопоставления с результатами экспериментальных исследований на специальном АД в лабораторных условиях.

В основу программы положено определение векторов фазных токов и напряжений по двум выборкам мгновенных значений и вычисление вектора тока ОП по векторам трех фазных токов. Ток фазы В при отсутствии трансформатора тока в этой фазе рассчитывается по токам фаз A и C.

- 2. Результаты математической обработки экспериментальных данных показывают, что при выявлении обрывов стержней КЗР АД более информативным параметром является относительное содержание тока ОП. Для выявления характера и места повреждения необходимо определять частоту тока ОП.
- 3. Полученные экспериментальные данные и результаты их обработки могут быть использованы при последующих обследованиях ЭД.
- 1. Корогодский В.И., Кужеков С.Л., Паперно Л.Б. Релейная защита электродвигателей напряжением выше 1 кВ. М.: Энергоатомиздат, 1987. 248 с. 2. Шнеерсон Э.М. Дистанционные защиты. М.: Энергоатомиздат, 1986. 448 с. 3. Орнатский П.П. Теоретические основы информационно-измерительной техники. К.: Вища школа, 1976. 455 с. 4. ГОСТ 13109 87. Требования к качеству электрической энергии в электрических сетях общего назначения. М.: Изд-во стандартов, 1988. 5. Брюханов Г.А., Князев С.А. Метод и устройство для диагностики состояния роторных обмоток асинхронных электродвигателей // Электрические станции. 1986. № 2. С. 44-45. 6. Гашимов М.А., Аскеров Н.А. Выявление неисправности стержней ротора асинхронных электродвигателей // Электрические станции. 1984. № 8. С. 60-66. 7. Сивокобыленко В.Ф., Гребченко Н.В., Нури Абделбассет. Автоматизация диагностики стержней короткозамкнутых роторов асинхронных двигателей собственных нужд электрических станций // Сборник научных трудов Донецкого государственного технического университета. Донецк. 1998. С. 6-13.