
ISSN 2074-7888, Наукові праці Донецького національного технічного університету,
серія Проблеми моделювання та автоматизації проектування, 2011, Випуск 10 (197)

UDC 004.722.2, 004.057.4

Pavel Skvortsov (M. Sc.), Ralph Lange (Dr. rer. nat.),

Frank Dürr (Dr. rer. nat.)
Institute of Parallel and Distributed Systems, Universität Stuttgart, Germany
{pavel.skvorzov, frank.duerr}@ipvs.uni-stuttgart.de, mail@ralph-lange.de

OPTIMIZING MAINTENANCE COST

OF P2P VORONOI OVERLAY NETWORKING

We present a P2P overlay network protocol based on Voronoi diagram and Delaunay
triangulation. The proposed algorithms of node join and leave include the resolution of
conflicts between distributed operations, by which concurrent networking is provided. The
topology updating operations are performed having minimized maintenance cost measured in
the number of messages. The proposed approach provides scalability by guaranteeing that for
a large network the cost of a single join operation is constant. For proving this result, we
evaluated the network maintenance cost by using an event-driven simulator.

Keywords: P2P network, Voronoi diagram, protocol, network topology.

Introduction

P2P overlay networks allow for scalable and robust data management of
large scale distributed systems. This includes the following basic operations: 1)
search for a data object with a given key (point query) or a key range (range
query), 2) registration of the given data object with a node in the system with a
key [1].

 Depending on the organisation of internode links, the network overlay can
be classified as unstructured or structured. The nodes in an unstructured overlay
network are linked in arbitrary fashion, while structured network organisation is
provided by an overlay pattern, which defines links for each node. In this work
we consider a structured P2P overlay network, which is preferred because of the
following disadvantages of unstructured networks: 1) they require higher
message overhead for routing by using undirected search like flooding or
random walk; 2) queries are not guaranteed to be resolved.

The existing structured P2P networks assume consistently hashed [2] keys
and therefore they have the uniform distribution of keys by hashing. The
consistent hashing scheme provides only local impact of the network topology
changes caused by node joins and leaves. By such principle the cost of join and
leave operations is optimized, in oppose to the traditional (non-consistent)
hashing, where join/leave operations may cause the rebuilding of the whole
network structure.

ISSN 2074-7888, Наукові праці Донецького національного технічного університету,
серія Проблеми моделювання та автоматизації проектування, 2011, Випуск 10 (197)

Today the widespread type of structured P2P network based on consistent
hashing is the distributed hash table (DHT). DHT is a decentralised structured
network, where each node is assigned to a unique interval or region of the
keyspace. Examples of DHT implementations are CAN [3], Chord [4], Pastry
[5], Tapestry [6], Tulip [7]. A non-DHT but a similarly structured overlay
approach is HyperCuP [8].

DHT networks support point queries, but they have uniform distribution
of keys due to hashing. The problem arises with locality-based range queries,
which require non-uniform distribution of keys and at least 2-dimensional index
space. A popular solution to these problems is the non-regular grid CAN [3], but
this approach has the following drawbacks: 1) inherent problem with rectangular
partitioning: a node without siblings (a neighbour node which has mirror cells)
cannot be trivially removed from the network; 2) data load on node joins and
leaves refers to only one other node, which leads to a skewed data distribution;
3) high variation of neighbours number, which may cause load misbalance as
well as increase the cost of node joins and leaves.

To solve the described above problems, the Voronoi based partitioning of
the key space has been proposed. Voronoi overlay (also known as Delanay
overlay) is a well-known approach for location-aware networks, which is
defined as follows. Given a set of nodes on the 2-dimensional plane, the
Voronoi diagram is the subdivision of this plane into Voronoi cells, one for each
node, so that the Voronoi cell for a node is the loci of all points closer to this
node than to any other node. The links between nodes form the Delanay
triangulation. Such location-aware distribution is suitable for a large network,
where the size of nodes is negligibly small in comparison with the distances
between them.

Several approaches for maintenance of Voronoi overlay have been
proposed (for overview of the related work, see Section 3). The common
drawbacks are: 1) node joins and leaves are not considered as possibly parallel
events; 2) the networking maintenance is performed in a proactive fashion,
which requires periodic exchange of neighbour tables (and therefore more
overhead).

We propose a novel maintenance protocol for Voronoi overlay network,
which creates and maintains the network topology based on Voronoi diagram
and Delaunay triangulation. As distinct from the most other approaches, our
protocol fulfils the following requirements:

1) Network management is performed in a distributed fashion, with no
global supervision: a node can receive and send messages only to its own
Voronoi neighbours.

2) Join/leave processes can occurring in parallel, and should run with
minimal latency without causing inconsistency of the Voronoi network
topology.

ISSN 2074-7888, Наукові праці Донецького національного технічного університету,
серія Проблеми моделювання та автоматизації проектування, 2011, Випуск 10 (197)

3) The protocol minimises the maintenance cost measured as the number of
messages to be transmitted between the nodes of the overlay network for its
maintenance.

The remainder of the paper is structured as follows. In Section 2 we
discuss related work; then we describe our system model in Section 3. In Section
4 we present the basic protocols and algorithms for a peer joining or leaving the
Voronoi network and analyse their communication cost. Then we discuss
concurrent join or leaves in Section 5. In Section 6 we evaluate the cost of our
protocols. Finally, the paper is concluded in Section 7.

Related Work

There are various approaches for Voronoi/Delaunay based networks.

Liebherr et al [9] describe the Delaunay networking mechanisms with full
networking functionality, where both network building and maintenance are
provided by periodic messages between the nodes. The approach is very
reliable, but causes excessive communication overhead.

The incremental construction in the work of Hu & Liao [10] requires
additional knowledge about non-geographic neighbours, since all the nodes
within AOI (Area of Interest) of a node are considered as its neighbours.
Various actions (move, jump, chat, trade) of nodes are realised.

GeoPeer of Ujo & Rodrigues [11] uses LRC (Long Range Contact)
mechanism for routing. To create and maintain the Delaunay topology, nodes
are periodically exchanging messages with their geographic neighbours, which
leads to an excessive communication overhead.

Kang et al [12] describes routing and join algorithms for Delaunay
networks, where the join algorithm is performed through distributed message
processing. The node join events are supposed to occur sequentially; no conflicts
between distributed messages are considered, as well as leaves of nodes.

Ohnishi et al [13] propose an incremental algorithm for building the
Delaunay overlay network. The algorithm assumes that nodes exchange all the
information about their neighbours as well as so-called non-neighbours, until the
neighbour lists of all nodes are complete. This principle also maintains network
having parallel networking operations.

Beaumont et al. [14] Long Range Contact (LRC) mechanism, as well as
the additional set of so called “close neighbours” for each node. Some problems
of routing and maintenance are analysed, but the disadvantage is that parallel
joins are not considered in their work.

Lee and Lam in [15] and [16] proposed distributed join and leave
algorithms for Delaunay based network, including the mathematical proof of the
algorithms’ correctness. The fixing of possible inconsistency caused by
concurrent joins is separated from the algorithm itself and is being performed
only by excessive heartbeat messages.

ISSN 2074-7888, Наукові праці Донецького національного технічного університету,
серія Проблеми моделювання та автоматизації проектування, 2011, Випуск 10 (197)

System Model

Our target system consists of a multitude of nodes, where every node has
the following information:

1) Unique address (ID), which is used for communication between nodes;
2) Position in terms of 2D logical coordinates x and y, to define the node’s

placement in the network service area;
3) The boot node – namely, the address and position of a node (we assume

that this node is randomly selected) which is already integrated into the existing
network topology. Knowing the boot node, a new node can start the process of
joining the network.

Based on the geographic position of a node, our protocol assigns a
separate Voronoi cell for this node by determining its Delaunay neighbours.
After a successful join, the new node knows the following:

1) Voronoi neighbours – the neighbour table which includes addresses
and positions.

2) Logical coordinates of data items (users and any other objects, which
are dependent to the node, being in its area of responsibility).

All nodes of the network are connected through the Internet-like
infrastructure. Here, Delaunay triangulation represents the set of links between
nodes in the Voronoi network. Nodes communicate with each other by messages
transmission. In our work we consider only messages for network maintenance
used by the Voronoi protocol, and do not consider messages for transferring user
data between nodes.

The proposed overlay protocol provides the consistency of network’s
Voronoi topology by implementing the maintenance algorithms. On the lower
level, we assume that nodes exchange messages using a reliable TCP-like
transport protocol. Non-delivered messages are being resent; duplicate messages
rejection is supported by unique identification of every message, knowing the
address of its sender and the sender’s local ID of that message.

Basic Network Operations

In this section we describe the basics of approaches for regular

(re)building of Voronoi network, which include algorithms of node join and
leave. Here we do not consider that the presented network operations may occur
in parallel for the neighbouring nodes; the protocol’s improvement for
concurrent operations follows in the next section.

Node Join

In general, the join algorithm consists of two phases. First, to route until

the destination node A which can be a vertex node of the new node’s

ISSN 2074-7888, Наукові праці Донецького національного технічного університету,
серія Проблеми моделювання та автоматизації проектування, 2011, Випуск 10 (197)

circumscribing triangle ABC, or a vertex of the nearest convex hull segment AB.
The second phase is to determine the full list of the new node’s neighbours and
create a new Voronoi cell inside the existing diagram, or to extend the existing
diagram’s convex hull with the new node (if it has joined outside).

We assume that the new node N knows at least one node F (the boot node)
which already belongs to the Voronoi network. The routing starts from F to find
the region containing geographic Voronoi neighbours of N. During the routing
process the current node must choose the next one on every step, knowing only
its neighbours. The choice of the next node is done by the routing algorithm
similar to the described in [17]. The main algorithm’s goal is to find the
circumscribing Delaunay triangle for N (or the nearest segment, if N is outside
the actual Delaunay triangulation). Thus, the routing relies on Delaunay links
and not on the neighbour’s distance to the target point.

If a node S with neighbours N1...Nk must forward a message to the
destination node A, it performs the following steps during the routing:

1) Check whether S is actually A, or if S has A among its neighbours. If
yes, destination node A is found, otherwise go to step 2.

2) Find the intersection between imaginary SA line and NiNi+1 Delaunay
segment.

3) Check, which node of the NiNi+1 segment is closer to A.
4) Send message to this neighbour to set it as S; go to step 1.
The routing process arrives at the node A, having detected one of the

following 3 situations:
a) There is a Delaunay triangle ABC which circumscribes N. It means that

N is located inside the actual Delaunay triangulation and can join network
through regular (internal) algorithm (see Section 4.2.1).

b) N is outside of any existing Delaunay triangle, and the nearest segment
AB of convex hull was found. Thus, the algorithm of an external join will
expand the convex hull of the Delaunay triangulation with N (see Section 4.2.2).

c) Previously there were only two or less nodes in the network (no further
processing is required).

In the first two situations, the complexity of the required messages
number, to which the join algorithm approximates, is:

)12( nrm join , (1)

where r is the number of messages which are sent to route from F to A; n

is the neighbours number of N after join is complete.
The evidence for (1) is the following: it is assumed that every neighbour

(except A, which actually initiates the join algorithm – this explains “minus 1” in
the formula) receives one message to add N to its neighbour list, and sends one
message for N to add this node to its neighbour list.

ISSN 2074-7888, Наукові праці Донецького національного технічного університету,
серія Проблеми моделювання та автоматизації проектування, 2011, Випуск 10 (197)

Internal Join

The internal join algorithm for a new node N is used if the circumscribing
triangle for N is found – this means that N does not expand the Delaunay
triangulation but joins in the internal area of it. The starting point for the
algorithm is node A of the circumscribing triangle ABC, at which the routing
from the boot node was finished. A looks among its neighbours for the nodes
which now must be the neighbour of N, and it sends in parallel a “construct”
message to B and C for them to do the same. The next potential neighbour of N,
e.g., from the sight of node A, is the Bi, where ABi is the next (clockwise from
AB) Delaunay segment with minimal angle BABi (see Fig 4.1). If B2 satisfies the
determinant condition [18] (i.e., Bi is the Voronoi neighbour of N), the algorithm
continues for both AB2 and B2B segments, and so on.

Figure 4.1 – The internal join algorithm

Each new found neighbour adds N to its neighbour list and independently

sends the “update” message to N. Thus, in the end the new joined node N has its
own complete neighbour list.

 External Join

The external join algorithm is used when the new node N joins the
external area of network’s Delaunay triangulation, and therefore the
circumscribing triangle for N does not exist. In that case only the nearest convex
hull segment is found through the routing from boot node.

The starting point is the convex hull node A of the found segment AB. The
message “find convex hull neighbours” is being forwarded in both A and B
directions through convex hull, if among neighbours of the current node there
are convex hull nodes, for which exists a non-intersected Delaunay connection

ISSN 2074-7888, Наукові праці Донецького національного технічного університету,
серія Проблеми моделювання та автоматизації проектування, 2011, Випуск 10 (197)

with N. Every found convex hull neighbour of N sends the “construct” messages
in the same way as it is described in Section 4.2.1. The “update” messages are
being sent to N in the similar principle as well.

If after the join process a previously external node became internal (is not
a part of convex hull anymore), it sends the message about its convex hull status
change to all its neighbours. The convex hull status of every neighbour must be
represented in the neighbour list, since it is relevant for routing.

Node Leave

The node leave is distinguished from the node failure. The leave is about

regular and controlled move out of the network of a single node, initiated by its
own request. If node L of a regular Voronoi network initiates its leave process, it
sends the message “delete me” to all its neighbours. With this message nodes
receive the neighbour lists to the rest L’s neighbours. Having got this
information, each neighbour can update its neighbour list independently, using
the determinant condition [18]. Therefore, the number of messages required for
the leave process is: nmleave  (n is the neighbours number of L).

Concurrent Network Management Protocol: Joins and Leaves

Here we explain how the concurrent management of network is supported.

We show how conflicts between neighbouring join operations may occur, and
how we can fix the resulting topology inconsistency using the Credit method.

Conflicts between Parallel Operations

The previous section’s algorithms assumed that nodes join and leave the

system sequentially. Here we introduce methods to deal with concurrent
operations. Parallel joins and leaves are desirable because this minimizes the
total latency. Some separate network’s regions might be reorganised in parallel,
if they do not affect each other during this process. The problem is that usually
during the update process some node has incomplete list of neighbours or
another kind of incorrect information, and some another node can send to it a
request to get this information for another process. This situation is unwanted
and critical, but cannot be avoided in distributed networking.

A possible solution is to have an external control to prevent operation to
take place before the previous process ends. However, this approach: a) requires
a global supervising mechanisms, which is contrary to the distributed
networking principles; b) having high churn rate, it requires queues of the
joining nodes, which may lead to monotonously increasing delays of join
requests. Thus, in a large and dynamic network, if time intervals between
requests are shorter than the runtime of the algorithm, the node join algorithm

ISSN 2074-7888, Наукові праці Донецького національного технічного університету,
серія Проблеми моделювання та автоматизації проектування, 2011, Випуск 10 (197)

must also provide the recovery of temporal inconsistency caused by parallel
joins.

In terms of a join operation, between the start and the end of the process,
every node participated in this process can be in one of the following 3 states:

1) Anticipant state: yet no changes regarding the actual join process are
done (at this time process works still with other nodes, and the “construct”
message to this node is yet to be sent);

2) Transitive state: some requests are processed at this node, and some are
not (or not received yet);

3) Accomplished state: join process is completed and the Voronoi diagram
around the new node is regular.

While node is in transitive state, its neighbour list is inconsistent. Actually
in the anticipant state of a node its neighbour list is already non-relevant: the
new node already exists, but is not integrated into network. If another node
begins its join process, the message initiated by it can request information stored
by a node which is already in transitive state. If it requests information from a
node in the anticipant state, this leads to the opposite situation. The result is an
incorrect neighbour list for both of the new nodes.

In a large Voronoi network, having low rate of joins, the majority of joins
may proceed without preventing each other because they are localised.
However, the described conflicts must be detected and solved in order to allow
the network run in parallel mode and have a consistent network topology. First
of all, to prevent the forwarding of incorrect information (about node’s
neighbours), the start and the end of transitive state for every involved node
must be determined.

 Determining Join Completion with Credit Method

A node which has initiated the join process is set to be responsible for

that, by assigning and releasing the busy flag for all the participant nodes. The
main idea of the Credit method is to determine when the join process is
complete through collecting all credits distributed during the join process. When
all credits are collected, we can release busy flag of all participant nodes at the
same time.

Typically the transitive period starts with the receiving of “construct”
message. To mark the end of transitive state, the initiator node (say, N) sends the
“end” message to all its neighbours, which it got when the join process has
finished. Since every single transaction is independent and has no view of the
whole process, the problem here is to determine, when the joining is finished.
The question “Has N received “update” messages from all its neighbours or
not?” is a problem of distributed computing. To solve it, Credit method is used
[19].

ISSN 2074-7888, Наукові праці Донецького національного технічного університету,
серія Проблеми моделювання та автоматизації проектування, 2011, Випуск 10 (197)

Each node which is currently involved as a new neighbour of N receives
its credit value with “construct” message. In the beginning every vertex node of
the circumscribing triangle gets credit = 1. If a vertex node (say, A) finds a new
neighbour for N amongst neighbours of A (say, A1), A divides its credit between
itself and A1. Thus, A1 receives its credit = 0.5 with “construct” message from A.
This algorithm runs before the next found node has no neighbours to extend the
Voronoi cell of N. As a result, the credits sum of all “successors” of each one of
3 original vertex nodes remains 1, therefore the total sum is always 3.

For the external case of join algorithm the start credit values are 1.5 for
every node of the nearest segment. This credit is also divided if a node finds
another neighbour for N; therefore the total sum of all credits for every separate
join process (as well as at any moment of time between start and end for both
internal and external algorithms) remains 3. With every “update” message to N
from its new neighbour, N receives the credit value of sender and adds it to the
credits counter. When this counter achieves 3, it means that the join process for
N is complete and busy flags of all neighbours now can be released. Thus, N
sends the broadcast message “end” to all its neighbours and removes its own
busy flag as well. Only after releasing its busy flag a node is ready again to
receive and process requests; before that the receiving of a request for another
initiator’s process indicates a conflict between processes.

 Conflict Resolution

There are two types of the concurrent conflicts: 1) process/routing

conflict, which can be solved by delaying the join of only one of two conflicting
nodes; 2) process/process conflict, which requires the rollback of both
operations. The situation with concurrent leaves is considered separately. For the
conflict resolution we use distributed algorithms, which rely on the node states
defined by Credit method.

 Resolving Process/Routing Conflict

This is the situation when the join process for a node, say N1, blocks the

routing stage of the join process (see Section 4.1) for node N2. In that case the
conflict occurs when the neighbour list of N2 is empty, as well as no changes to
the network topology were initiated by N2.

Thus, the busy node (node in transitive state) which has therefore detected
the conflict (and which cannot forward the routing because of inconsistency of
its neighbour list) sends the “rejoin” message to N2. Since N2 has not initiated
any network change yet, other nodes do not have to be informed (no rollback for
them is required). N2 will try to join the network after a certain timeout, when N1
is supposed to finish its join process and to set free the busy node on the path of
the routing, which was stopped during the previous attempt.

ISSN 2074-7888, Наукові праці Донецького національного технічного університету,
серія Проблеми моделювання та автоматизації проектування, 2011, Випуск 10 (197)

 Resolving Process/Process Conflict

This type of join conflict may occur when the parallel joining nodes have

already found their circumscribing Delaunay triangles and independently began
to change the actual Voronoi network topology. It can lead to the topological
inconsistency, if the joining new nodes either are mutual neighbours (i.e. should
be neighbours after the correct join processes) or will have common neighbours.

In Fig. 5.1 nodes N1 and N2 are beginning join processes. Nodes F and G
should be their common neighbours, and N1 and N2 should be considered as
mutual neighbours. It means that without conflict resolution, these two parallel
processes may ignore each other, use incomplete neighbour lists and therefore
do not establish all links necessary for consistency the topology.

The basic idea of conflict resolution is after detecting concurrent joins, to
rollback both join processes and re-start them after different timeouts.

Figure 5.1 – Process/process conflict emerging

If a busy node receives messages from another join process, it defines it as

conflict and takes action. The node which detected a conflict (F or G), knowing
the addresses of both new nodes, sends them the message “rollback and rejoin”.
The new nodes send to all the currently found neighbours a message to restore
their last valid neighbour lists (which is being stored with every busy assigning,
before the new join begins the update of list). Then, after the randomly chosen
timeouts with enough large variation, both new nodes try to join the network
again (supposed to do it at different points in time).

Note, that we cannot stop only one join and continue another, because
both processes might already have used the incorrect information of nodes in
anticipant state.

If more than 2 nodes are conflicting, the resolution does not differ from
the two nodes conflict in terms of algorithm. Such a situation only extends the
conflict domain and increases the possibility of rejoin conflict.

ISSN 2074-7888, Наукові праці Донецького національного технічного університету,
серія Проблеми моделювання та автоматизації проектування, 2011, Випуск 10 (197)

 Dealing with Concurrent Leaves

Leave processes are being executed in terms of only one time step – single

broadcast of the message “deconstruct neighbour” – and do not mark the
involved nodes as busy. It means that we cannot detect the concurrent
neighbouring leaves by using the mechanism of conflicts detection, described in
the previous Section 5.3. At the same time, the problem remains, because if a
leaving node sends a message about this to its neighbour which just left the
network concurrently, the nodes around them do not have the full list of nodes to
rebuild the local Delaunay diagram.

Here we assume that if a node leaves the network, it does this not
immediately but still can receive and send messages for a time sufficient for the
possible delayed reaction of other nodes. We say that node in such situation is in
suspended state: when it has already left the network topology but can react to
delayed messages from its former neighbours (or even some other messages
from non-neighbours).

If a suspended node receives the “deconstruct neighbour” message from
its former neighbour, it repeats the leaving broadcast of “deconstruct neighbour”
messages, with the extended node list sent with each message:

1) A suspended node A knows its former neighbours A1…An.
2) A receives from B the “deconstruct neighbour” message with list

B1…Bk.
3) A sends the “deconstruct neighbour” message to A1…An and B1…Bk,

which contains both all A1…An and B1…Bk nodes.
In case when the receiver node of a “deconstruct neighbour” message is

busy (because of a parallel join process), is receives this message but does not
execute the corresponding rebuilding of its neighbour table only after its busy
status is changed to active.

Evaluation

Basic Cost for Building the Overlay Network

To evaluate the basic message overhead for network management, we

only consider sequential joins: each new node joins only after the previous join
process is fully completed. Therefore, we can determine the minimum
maintenance cost, which take place independently from any conflicts.

Here we distinguish 3 types of the networking cost: main (needed for new
a Voronoi cell construction), hull, and routing messages. The resultant numbers
of these messages used for network construction with different sizes are shown
in Fig. 7.1, as well as the number a node’s neighbours in the resulting network.
All values here are average number of messages per node. Our results confirm
that the average number of a node’s neighbours in the Voronoi network

ISSN 2074-7888, Наукові праці Донецького національного технічного університету,
серія Проблеми моделювання та автоматизації проектування, 2011, Випуск 10 (197)

approximates to 6 [20] if we have uniform distribution and enough many joined
nodes. “Enough many” means 100-200 joined nodes, as we can see in the
diagram in Fig. 7.1.

Figure 7.1 – Basic communication cost in sequential mode

We can see that for a large network the cost of a single join is predictable

getting closer to a constant value, if the network size is stable. For a large
network with a varying size the only non-constant component of the node join
cost structure is the messages number of the routing for join.

Cost of the Concurrent Networking

Here we evaluate the network construction in terms of concurrent joins,

for what the parallel mode of simulation is used. In oppose to the sequential
mode evaluated in Section 7.1, it means, that each new join may occur before
the previous join process is complete. The number of new node joins per 1
second is the join rate; it’s defined once for every simulation of network
construction.

Different network sizes and join rates provide various fractions of
messages for routing and non-routing (management and recovery) messages in
the total number of transmitted messages (Fig. 7.2). The reason for this is that
more conflicts occur in the beginning of the network construction (because of
network’s small size) and those nodes rejoin after the relatively long timeouts.
Since the network gets larger, nodes joins cause fewer conflicts and the average
value of non-routing messages number stabilises, while the number of routing
messages increases. Thus, the upsurges of the curves given in the diagram of
total cost in Fig. 7.2 are caused by the numerous conflicts and recovery (non-
routing) messages, while the constant rising is determined by the routing

ISSN 2074-7888, Наукові праці Донецького національного технічного університету,
серія Проблеми моделювання та автоматизації проектування, 2011, Випуск 10 (197)

messages increase. For larger networks the average cost are getting lower
because of lesser number of conflicts and rollbacks.

Figure 7.2 – Parallel simulation results for various join rates

For join rates 1 and 4 the results are very similar as for the sequential

mode because of relatively long delays between joins. Rates 8 and 12
significantly increase the average values for small networks by using a lot of
algorithmic messages in the beginning of building process. After stabilisation
the parameter’s increase is achieved mostly by routing messages. The much
higher rates 25 and 50, however, show another trend: they causes so many
rollbacks (as in the beginning, so later after conflicts between rejoins) that the
rejoin events become distributed uniformly in time, as well as average messages
number.

Conclusion

First we motivated the application of Voronoi diagram as network

topology for its balanced data distribution between nodes. Then, we proposed a
new network protocol for managing a Voronoi overlay network. The main
advantage of our approach is that it supports concurrent join and leave operation
without using heartbeat messages. Our evaluation showed that the average cost
of networking operations is limited by a constant value. By excluding the
routing messages, the construction of a new Voronoi cell is localised and its cost
does not growth together with the network size.

ISSN 2074-7888, Наукові праці Донецького національного технічного університету,
серія Проблеми моделювання та автоматизації проектування, 2011, Випуск 10 (197)

References

1. J. Gao Efficient support for range queries in DHT-based systems: Technical Report

CMU-CS-03-215 / J. Gao and P. Steenkiste. – Carnegie Mellon University, 2003.
2. Consistent hashing and random trees: Distributed caching protocols for relieving hot

spots on the World Wide Web / D. Karger, E. Lehman, F. T. Leighton, M. Levine, D. Lewin,
and R. Panigrahy // In Proceedings of the 29th Annual ACM Symposium on Theory of
Computing. – May 1997. – Р. 654-663.

3. A Scalable Content-Addressable Network / S. Ratnasamy, P. Francis, M. Handley,
R. Karp, and S. Shenker / In ICSI Technical Report. – 2001, Jan.

4. “Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications” / I. Stoica,
R. Morris, D. Karger, F. Kaashoek, H. Balakrishnan // ACM SIGCOMM. – 2001.

5. Rowstron "A. Pastry: Scalable, decentralized object location and routing for large-scale
peer-to-peer systems" / A. Rowstron and P. Druschel // IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), Heidelberg, Germany. – 2001, Nov. – Р.
329-350.

6. Tapestry: a resilient global-scale overlay for service deployment / B.Y. Zhao, L. Huang,
J. Stribling, S.C. Rhea, A.D. Joseph, and J. Kubiatowicz // IEEE Journal on Selected Areas in
Communications. – 2004. – Р. 41-53.

7. Practical locality-awareness for large scale information sharing / I. Abraham, A. Badola,
D. Bickson, D. Malkhi, S. Maloo, and S. Ron // In Proceedings of IPTPS. – 2005.

8. A scalable and ontology-based P2P infrastructure for semantic web services /
M. Schlosser, M. Sintek, S. Decker, W. Nejdl // In Peer-to-Peer Computing. – 2002, 104-111.

9. Liebeherr J. Application-Layer Multicasting with Delaunay Triangulation Overlays / J.
Liebeherr, M. Nahas and W. Si // IEEE J. Selected Areas Comm. – 2002. – V.20. – Р. 1472-
1488.

10. Hu S.Y. “Scalable Peer-to-Peer Networked Virtual Environment” / S.Y. Hu and
G.M. Liao // Proc. ACM SIGCOMM. – Wksp. on NetGames, Aug. 2004.

11. Araujo F. “Geopeer: A location-aware peer-to-peer system” / F. Araujo and
L. Rodrigues // Department of Informatics, University of Lisbon, DI/FCUL TR 03–31. –
2003, December.

12. P2P spatial query processing by Delaunay triangulation / Bog-Ja Lim, Hye-Young
Kang, and Ki-Joune LiIn // Proceedings of Workshop on Web and Wireless GIS. – 2004. – Р.
136–150.

13. Masaaki Ohnishi "Incremental Construction of Delaunay Overlaid Network for Virtual
Collaborative Space'' / Masaaki Ohnishi, Ryo Nishide, Shinichi UeshimaIn // Proc. of
Conference on Creating, Connecting and Collaborating through Computing (C5'05), IEEE
CS. – Kyoto: Japan, January 2005.

14. VoroNet: A scalable object network based on voronoi tessellations / Beaumont O.,
Kermarrec A.-M., Marchal L., Rivière É. // In proceedings of IPDPS 2007. – 2007, March.

15. Dong-Young Lee Protocol Design for Dynamic Delaunay Triangulation. ICDCS 2007:
26 / Dong-Young Lee, Simon S. Lam.

16. Dong-Young Lee "Efficient and Accurate Delaunay Triangulation Protocols under
Churn" / Dong-Young Lee and Simon S. Lam // The University of Texas at Austin,
Department of Computer Sciences. Report# TR-07-59 (technical report). – November 9,
2007. 14 p.

17. Prosenjit Bose Online Routing in Triangulations.ISAAC’99:113-122 / Prosenjit Bose,
Pat Morin.

ISSN 2074-7888, Наукові праці Донецького національного технічного університету,
серія Проблеми моделювання та автоматизації проектування, 2011, Випуск 10 (197)

18. Sugihara K. Construction of the Voronoi Diagram for One Million Generators in
Single-Precision Arithmetic / K. Sugihara and M. Iri // In Proceedings of IEEE, 80(9):1471-
1484, 1992.

19. Mattern F. Verteilte Basisalgorithmen / F. Mattern. – Springer-Verlag, 1989.
20. Computational Geometry: Algorithms and Applications (Third Edition) / Mark de

Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars. – Springer-Verlag, 2008. – 386 p.

Надійшла до редакції 12.10.2011
Рецензент: д-р техн. наук, проф. Святный В.А.

П.В. Скворцов, Р. Ланге, Ф. Дюрр
Штутгартський університет, Німеччина

Оптимізація обслуговування P2P оверлейної мережі Вороного. В цій роботі ми
представляємо протокол для оверлейної пірингової мережі, заснований на діаграмі
Вороного і тріангуляції Делоне. Запропоновані алгоритми приєднання і від'єднання
мережевого вузла включають в себе вирішення конфліктів між розподіленими
операціями, за допомогою чого забезпечується функціонування операцій зі зміни
мережевої топології в синхронному режимі. Операції відновлення топології
виконуються з мінімізацією витрат, які ми вимірюємо в кількості повідомлень.
Пропонований підхід забезпечує масштабованість: гарантується, що у великій мережі
вартість окремого приєднання вузла наближається до постійних значень. За допомогою
емулятора оцінено вартість операцій по зміні мережевої топології.
Ключові слова: P2P-мережі, діаграма Вороного, протокол, мережева топологія.

П.В. Скворцов, Р. Ланге, Ф. Дюрр
Штутгартский университет, Германия

Оптимизация обслуживания P2P оверлейной сети Вороного. В этой работе мы
представляем протокол для оверлейной пиринговой сети, основанный на диаграмме
Вороного и триангуляции Делоне. Предложенные алгоритмы присоединения и
отсоединения сетевого узла включают в себя разрешение конфликтов между
распределенными операциями, с помощью чего обеспечивается функционирование
операций по изменению сетевой топологии в синхронном режиме. Операции по
восстановлению топологии выполняются с минимизацией затрат, которые мы измеряем
в количестве сообщений. Предлагаемый подход обеспечивает масштабируемость:
гарантируется, что в большой сети стоимость отдельного присоединения узла
приближается к постоянному значению. С помощью программы-эмулятора была
оценена стоимость операций по изменению сетевой топологии.
Ключевые слова: P2P-сети, диаграмма Вороного, протокол, сетевая топология.

