
High Temperature, Vol. 38, No. 3, 2000, pp. 494-496. Trausiated from Teplofizika I,~sokikh Temperatur, VoL 38, No. 3, 2000, pp. 516-518. 
Original Russian Text Copyright �9 2000 by Loktionov. 

BRIEF 
COMMUNICATIONS 

Determination of the Critical Parameters 
of a Classical One-Component System 

with Model Interaction Potential 
I. K. Loktionov 

Donetsk State Technical University, Donetsk, 340000 Ukraine 
Received June 4, 1999 

It is well known that the knowledge of free energy 
enables one to investigate all thermodynamic proper- 
ties of a system. This paper deals with the investigation 
of phase transitions in classical one-component sys- 
tems with two-particle central interaction potentials 
v(Irl) using the factorization method suggested previ- 
ously in [1] to calculate the configuration integral. The 
present communication is based on the expression for 
the free energy of a system located in a volume V, 
whose N particles interact by means of a two-particle 
potential admitting the Fourier expansion [2] 

F = - T I n Z  = Fid + N ~(n fr0- Vo) 
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where bid is the free energy of ideal gas, n = N/V  is the 
density, [3 = l/T, Tis the temperature in energy units, X• = 

.~(g• + 1), g• = 1/nl]vi(k), fl  • is a set of wave 
vectors k, the Fourier transform 

v+Ck) = frCk), k � 9  f~+ 

v-(k) = -frCk), k �9 fF 

of the two-particle central potential depends on the 
module of the vector k, and v 0 and fr o respectively 
denote the values of the potential and its Fourier trans- 
form at r = 0 and k = 0. 

We will treat a model in which the interaction poten- 
tial v(Irl) has a nonnegative Fourier transform (the set 
f~- is empty), which corresponds to repulsion in the 
k-space. We will demonstrate below that the potential 
v(Irl) with v(k) > 0 is not necessarily repulsive in the 
coordinate space and may possess characteristic fea- 
tures of real potentials. The quantity g+(k) is positive by 
definition; therefore, at N ~ 10:3, the parameter X+ >> 1. 

Then, we use the asymptotics of the probability integral 
to find the expression for free energy, 

N 
F = F i d + ~ ( n v  O - v  o) 

(2) 
TV ~ d ~  In 

----~-!§ (1 +n[~v+(k)). 

Note that the result (2) may be derived both by the 
method of collective variables [3] and by the saddle- 
point method [4]. 

Equation (2) yields the equation of state 1 

2 + 
n v0 

P = Pid + 
2 

(3) 

l, 
1 +n-~v*(k)-I 
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which, together with the set of equations 

( ) + _r f d~ OP = T + n v o -  = O, 
~nn r 2 d (2•)n(1 + n ~ v + ( k ) )  2 

f l  § (4) 
02P ) + T d~  (I]v+(k))2(1 - n ~ v + ( k ) )  = 0 

0n2Jr = v ~  2 1 (2n)~ (1 +n~xr+(k)) 3 
f l  + 

(which is one of the options of preassignment of the 
critical state), defines the critical pressure, temperature, 
and density. 

The search for an analytical solution of the set of 
equations (4) in the general case of arbitrary potential 
is difficult; however, one can formulate the necessary 
condition of its solvability [5] 

lim [(v+(k)):lkl ~ = O, 
Ikl ~ ** 

1 The integrand 9(x) = In(1 + x) - x/(l + x) is nonnegative for any 
values of x; therefore, the last term in equation (3) leads to a 
decrease of pressure. 
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which provides for the convergence of the integrals in 
[4]. The objective of this study (solution of (4)) may be 
accomplished in some special cases. 

Let us assume that, in the three-dimensional case, 
the interaction between particles proceeds with the aid 
of the Yukawa potential with the Fourier transform 

Zc(k) = v+(k) = Al(k 2 + a2), (5) 

where A > 0 and a > 0 are parameters of the potential. 

The integration for k yields the equation of state 

P = n T ~  n xr~ Ta3II-~[l+n~v~ 0 ' ( 6 )  

We substitute equation (6) into the set of equations (4) 

3 
= T[I +ll~..r 0 a - 2 ] =  O, - l~n ( f~Vo)  (1 + rifle, o) -~/2 

/ g n 2 ) r  

3 

= [~ro[1-  3--~nl3:r +nl3fr0)(l +nH7r = 0  

and solve this set to find the critical parameters 

n o ~ 

3 a 1 24n,,/3 
1 2 9 4 / ~ ,  [30 = 0 = a3(rO ' 

P0 = (2 - 4~)noT o. 

(7) 

Dijkstra and Van Roij [6] used the central-field the- 
ory and the Monte Carlo method and managed to dem- 
onstrate the presence of a first-order phase transition in 
a system with a repulsive Yukawa potential. The param- 
eters (7) enable one to calculate the compressibility fac- 

tor Z c = 2 - ~ = 0.268 (for the investigated materials, 
Zc < 0.375 [7]) and reduce the equation of state (6) to a 
dimensionless form, 

n(z, 

- -  
(8) 

Here, x = T/T o, tp = V/Vo, and n = P/Pc are the 
reduced temperature, volume, and pressure, respec- 
tively. The isotherms constructed using equation (8) are 
continuous curves exhibiting, at 0 < x < 1, "van der 
Waals" loops and vertical asymptote q~ = 0, as must be 
in the case of a potential without a hard core ("van der 
Waals" isotherms have a vertical asymptote tp = 1/3). 

The spinodal equation corresponding to equation of 
state (8) has the form 

( ~ )  X( l  2ol 3 4r3 01 = Z  + =  35/TyT01/ j o, (9) 

where 01 = n/n o = if(p, and admits an exact solution. At 
the critical point with x = 1 and (p = 01 = 1, the equality 
(~/~01) = 0 is valid (i.e., the isothermal compressibility 
is infinite), and a region of absolutely unstable states 
exists for all subcritical isotherms, in which (/~/'d01) < 0, 
this being indicative of a first-order phase transition. 

The presence of an exact solution to the set of equa- 
tions (4) defining the critical point for the model inter- 
atomic potential makes possible the search for approx- 
imate solutions for "real" interactions by the methods 
of perturbation theory in which the solution of (7) 
serves as the function of zero approximation. 

The interatomic potential 

exp(-ar)(A Bh 
v ( r ) =  ~-~ , - - r . - - - / ,  (10) 

\ r  za) 

as well as, for example, a linear combination of Yukawa 
potentials [8], appears "realistic." With a certain selec- 
tion of coefficients, potential (10) has a potential well 
and is repulsive in the case of small distances and 
attractive in the case of large distances. The validity of 
the condition 

(B/A) < a 2 (11) 

provides for the above-identified properties of the 
potential and for the positiveness of its Fourier trans- 
form, which has the following form in the space of 
dimension D -- 3: 

Zc(k ) _ A B 
k2 + a2 ( k2 + a2)2. (12) 

As distinct from [8], the suggested model attracts 
particular interest because it enables one to analytically 
find the minimum of potential (10), 

-~(-~m-a2) exp[-arm]' 
v(r,,) = A l (13) 

where rm = (1 + ~/1 + 2e)/ea and e = B/Aa 2. This fact 
may enable one to find the dependence of the critical 
parameters nc and ~c of the system on the potential well 
depth V(rm). The integration of (3) with Fourier trans- 
form (12) leads to the equation of state 

2- r3h, . w ) p = n T + n  Vo 
T 12nL " ~ . X - I  Q 

(14) 
2n~w + n~w~/1 + n~vo n~Zr -] 

2Q J 
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where :r = A/a2 - B~ a4, w = A[a 2, and Q = 

~/2 + n~w + 2~1 + n6Zr . 

Note that, in the case of B ,. O, r m tends to infinity, 
and V(rm) ,. 0, which brings about the disappearance 
of the potential well; i.e., potential (10) changes to the 
Yukawa potential, and the equation of state (14) goes, 
as it must, to the equation of state (6) for a system with 
a potential of the Yukawa type. 

The solution to the set of equations (4) with equa- 
tion (14) involves serious difficulties. The emerging 
equations reduce to algebraic equations of high 
degrees; therefore, no exact analytical expressions of 
critical parameters for model (10) have been found. 
Nevertheless, condition (1 l) provides a natural possi- 
bility (e < 1) of carrying out the search for critical 
parameters using perturbation theory. We will first per- 
form the expansion of (14) in powers of small parame- 
ter accurate within first-order terms, 

P(n, T) = Po(n, T) + ePl(n, T) + .... 

where Po(n, T) is the equation of state (6), 

Pl(n, T) 

2 Ta3I (n~w) 2 ] 
_ n w +  16nL,,/1 n6w(1 + ~ + n ~ - w )  2 2a 2 + 

We will seek the solution to the set of equations (4) 
in the form 

nc = no+Enl+ . . . .  ~c = ~0+E61 + .... 

where n o and 60 are critical parameters in (7). We will 
now linearize the set of equations (4), 

OoPn~ (n0, 60), 

02po 02Pl 
~n--'T(enl, el31) = -IZ ~n 2 (no, 60). 

We solve this set with respect to n~ and 6~ to find the 
critical parameters nc and [it, 

nc = n o ( l -  1.647e+.. . ) ,  
(15) 

6~ = 6 0 ( 1 - 3 . 9 1 5 e + . . . ) .  

The critical temperature is related to a minimum on 
the interaction potential curve. By the order of magni- 
tude, this minimum for all substances is equal to Tc [9]. 
An analysis of expressions (13) and (15) reveals that an 
increase in e causes an increase in the potential well 
depth; in this case, in the first order of the perturbation 
theory, the critical density decreases and the critical 
temperature increases. Therefore, the parametric 
dependence of 6c(e) on V(rm(e)) in a first approximation 
leads to a physically reasonable result which is in qual- 
itative agreement with the data given in [10]. Note that, 
within the suggested model (10) and approximation 
(2), one can demonstrate that, with ~r -- 0, no phase 
transition is present in the system. 
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