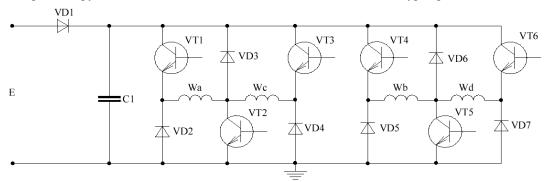
УДК 621.313

Л.А. ВАСИЛЬЕВ (канд техн. наук, доц.), **Ю.В. МНУСКИН** (канд техн. наук), **А.И. ЛУЖНЕВ** Донецкий национальный технический университет


ОДНОВРЕМЕННАЯ КОММУТАЦИЯ ФАЗ И ЕЕ ВЛИЯНИЕ НА ВЫХОДНЫЕ ХАРАКТЕРИСТИКИ ВРД

The possibilities of improving the efficiency of energy conversion in the Switched Reluctance Motors were considered. The circuits of power supply motors with capacitive energy buffer and with simultaneous switching of phases were analysed. The output characteristics were calculated and the advantage of scheme with simultaneous switching of phases for the motors of medium and large power was shown.

Получение конкурентоспособных технических показателей вентильных реактивных двигателей (ВРД) при питании от низковольтных источников ЭЛС требует формирования фазных токов с максимальным заполнением токовой диаграммы для увеличения момента и механической мощности. Известно, что при изменении частоты вращения двигателя изменяются значения фазного тока и коэффициента токозаполнения. Для улучшения условий формирования фазных токов ВРД в [1] было предложено использование последовательных и параллельных емкостных буферов энергии (БЭ). Сделан вывод, что последовательное включение емкостных буферов повышает "коэффициент отдачи" двигателя в 1,2...1,3 раза и использование активного объема электромеханического преобразователя в 1,6...1,7 раза, тогда как параллельное включение БЭ не дает значительного эффекта. Положительное действие последовательных емкостных буферов энергии (ПБЭ) проявляется в повышении напряжения питания при включении фаз ВРД за счет последовательного подключения источника питания и напряжения заряженного БЭ. Применение предложенных в [1] схем силовых полупроводниковых преобразователей (СПП) с емкостными БЭ ограничивается маломощными ВРД и имеет недостаток, связанный с разделением во времени процесса накопления энергии буфером при выключении одной фазы и процесса включения другой фазы с использованием уже накопленной энергии буфером, т.е. две фазы не могут работать одновременно, что приводит к провалам момента. В [2] для устранения этого недостатка предлагается применить два последовательных БЭ в четырехфазном ВРД, благодаря чему становится возможной одновременная работа фаз с использованием энергии буферов при повышении мощности маломощного двигателя на 35...38%.

На основе анализа процессов, протекающих в схемах питания ВРД с последовательными емкостными БЭ, можно сделать вывод, что вышеописанные схемы применимы только для двигателей небольшой мощности. При увеличении мощности двигателя требуется существенное увеличение емкости и реактивной мощности буфера, при этом увеличиваются его стоимость и массогабаритные показатели. Поэтому авторами статьи было выбрано другое направление исследований по повышению эффективности ВРД средней и большой мощности, связанное с использованием одновременной коммутации фаз (ОКФ), которая способствует значительному улучшению качества переходных процессов.

Сущность данного способа заключается в непосредственной передаче электромагнитной энергии от предыдущей фазы к последующей, минуя буфер энергии и источник питания ВРД. При этом происходит форсированное переключение участвующих в передаче энергии фаз, вследствие чего улучшается коэффициент заполнения токовой диаграммы и увеличивается момент двигателя. Для реализации способа подходят известные схемы СПП без БЭ (например, асимметричного полумоста, в дальнейшем тексте — базовая схема (БС)), в которые добавляется диод, "развязывающий" источник питания и СПП на время форсированного переключения фаз при одновременной коммутации. Поскольку в начальный момент времени при одновременной коммутации в выключаемой фазе протекает значительный по величине ток насыщения, а во включаемой фазе ток равен нулю, то необходимо принять меры по обеспечению безопасной траектории переключения фаз, которую можно обеспечить созданием дополнительного контура протекания тока.

Pисунок I-Cхема питания обмоток четырех ϕ азного BPДc OК Φ

Дополнительный контур удобно создать с помощью емкости, подключаемой параллельно цепи питания СПП. Таким образом, получаем схему питания ВРД с ОКФ, показанную на рисунке 1.

Принципиальным отличием работы ВРД с ОКФ от работы с БЭ является отсутствие промежуточного преобразования запасенной электромагнитной энергии фаз в электрическую энергию емкостных буферов, а применяемая в схеме питания емкость обеспечивает безопасную траекторию переключения фаз и защищает цепи питания от возникающих перенапряжений. Таким образом, величина этой емкости определяется допустимым напряжением полупроводниковых ключей, используемых в СПП, и при ее расчете не возникает противоречия, характерного для БЭ, когда, с одной стороны, для увеличения напряжения на БЭ требуется уменьшать емкость, а с другой стороны, для увеличения времени разряда емкости буфера, необходимо ее увеличивать.

Основные закономерности протекания переходных процессов при одновременной коммутации фаз проанализируем по эквивалентной электрической схеме СПП для двух фаз, например, С и D (рисунок 2). Расчет переходных процессов и выходных характеристик ВРД выполнен методом математического моделирования.

На рисунке 3 представлены графики изменения токов фаз C, D и напряжения на емкости C1 в номинальном режиме работы ВРД с ОКФ.

Цикл коммутации начинается в момент времени t_0 , когда подается питание на возбуждаемую фазу,

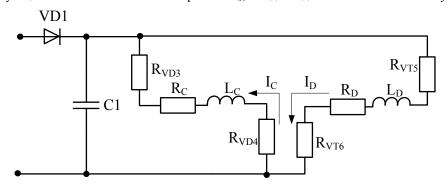


Рисунок 2 – Эквивалентная электрическая схема СПП для двух фаз

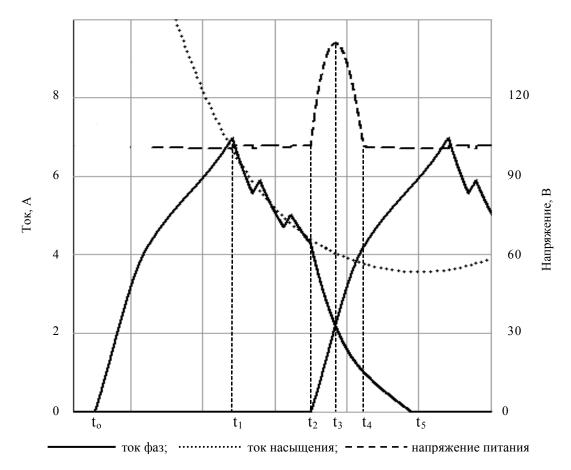


Рисунок 3 – Переходные процессы при одновременной коммутации фаз

например, C, и ее ток начинает возрастать. К моменту времени t_I магнитная система двигателя насыщается, ток фазы достигает максимального значения и далее формируется по кривой тока насыщения.

В момент времени t_2 ротор занимает угловое положение, соответствующее углу выключения, и одновременно начинаются процессы выключения активной фазы С и включения следующей фазы D. К этому моменту времени ток фазы С не превышает значение i_{nac} , соответствующее току насыщения магнитной системы двигателя для угла выключения. По эквивалентной схеме (см. рисунок 2) видно, что диод VD1 закрыт ЭДС самоиндукции фазы С, превышающей ЭДС источника питания, а ток фазы С определяется суммой токов включаемой фазы D и емкости C1:

$$i_C(t) = i_D(t) + i_{C1}(t)$$
 (1)

Из равенства (1) следует, что в момент коммутации t_2 ток выключаемой фазы полностью протекает через емкость, затем он начинает уменьшаться при одновременном увеличении тока включаемой фазы и уменьшении зарядного тока емкости. В момент времени t_3 выравниваются токи фаз, ток емкости становится равным нулю, а напряжение на ней достигает максимального значения U_{Cmax} . Таким образом, за короткий промежуток времени напряжение на емкости увеличивается до U_{Cmax} , которое может в несколько раз превышать ЭДС источника питания двигателя, и этим повышенным напряжением питается включаемая фаза, что приводит к форсированному увеличению тока. После выравнивания фазных токов продолжается уменьшение тока отключаемой фазы и увеличение тока включаемой фазы, что в соответствии с (1) приводит к изменению направления тока емкости, которая начинает разряжаться и отдает накопленный заряд включаемой фазе. На этом промежутке времени продолжается форсированное увеличение тока включаемой фазы до момента времени t_4 , когда емкость разряжается до величины ЭДС источника питания двигателя. При этом открывается диод VD1, и далее процесс включения фазы протекает обычным образом при питании от источника ЭДС. Одновременно подзаряжается емкость и уменьшается до нуля ток отключаемой фазы.

Таким образом, процессы в схеме с ОКФ существенно отличаются от процессов в схемах с БЭ, обеспечивая форсированное включение тока. В связи с этим представляет интерес сравнительный анализ выходных характеристик двигателей различной мощности с базовой схемой СПП, с последовательными буферами энергии и с одновременной коммутацией фаз для определения области рационального применения предложенного способа питания ВРЛ.

Таблица 1 – Номинальные данные ВРД

Номинальные данные	ВРД1	ВРД2
$P_{\scriptscriptstyle \mathrm{H}}$, к B т	0,13	15
$U_{\scriptscriptstyle \mathrm{H}},\mathrm{B}$	100	130
$n_{\scriptscriptstyle \rm H}$, об/мин	1500	615
Конфигурация	8/6	8/6
$w_{\phi a 3 \mathrm{M}}$, витков	178	26
$S_{\text{пол}}, \text{ cm}^2$	5,23	150
2δ, мм	0,5	3
K_{Λ}	4	8

Для сравнительного анализа использованы физические модели маломощного двигателя ВРД1 и силового ВРД2, данные которых представлены в таблице 1. Для этих физических моделей выполнен расчет электромагнитных процессов и получены характеристики, позволяющие оценить эффективность применения рассматриваемых схем питания ВРД при различных значениях емкости. Для обеспечения безопасного режима работы минимальная емкость ограничена максимальным допустимым напряжением питания СПП и электрической прочностью изоляции обмотки.

В таблице 2 представлены результаты расчета максимальной механической мощности $p_{2\text{max}}$, номинального момента m_{H} и частоты вращения v, соответствующей $p_{2\text{max}}$, (указаны в относительных единицах, за базисные приняты значения для БС

Таблица 2 – Выходные величины ВРД1 и ВРД2

Схема питания	ВРД1			ВРД2				
ВРД	С, мкФ	$m_{\scriptscriptstyle \mathrm{H}}$	$p_{2\text{max}}$	v	С, мкФ	$m_{\scriptscriptstyle \mathrm{H}}$	$p_{2 \text{ max}}$	v
Базовая схема СПП	-	1,0	1,0	1,0	-	1,0	1,0	1,0
Схема с ОКФ	1	1,43	1,71	1,82	50	1,64	1,52	1,99
	10	1,16	1,19	1,44	200	1,42	1,30	1,73
Схема с ПБЭ	1	1,60	2,24	2,03	1000	1,62	1,48	1,77
	10	1,32	1,44	1,70	2000	1,45	1,32	1,64

На рисунках 4 и 5 построены естественные механические характеристики и характеристики механической мощности ВРД1 и ВРД2.

Полученные результаты свидетельствуют о значительном повышении эффективности преобразования энергии при использовании как ОКФ, так и ПБЭ. Однако следует заметить, что буферы энергии позволяют получить большую мощность ценой усложнения схемы (т.к. необходимы две емкости) и увеличения емкости буферов (т.е. массогабаритных показателей и стоимости). Поэтому критерии выбора схемы питания двигателей разной мощности будут различными.

Для двигателей малой мощности указанные выше недостатки применения ПБЭ не оказывают решающего влияния, поэтому данную схему рекомендуется использовать в большинстве случаев при питании от источников постоянного напряжения. Однако при питании ВРД от сети переменного тока [3] примене ние последовательных буферов не представляется возможным, поэтому целесообразно использовать схему с ОКФ.

- а) механические характеристики
- б) характеристики механической мощности

Рисунок 4 – Характеристики ВРД I

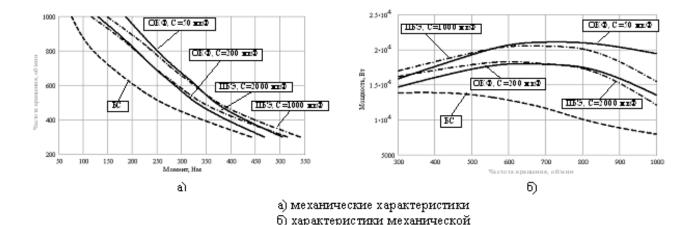


Рисунок 5 – Характеристики ВРД

Для двигателей средней и большой мощности проанализированы характеристики, полученные для рассматриваемых схем питания при существенно отличающихся величинах емкостей. Так, согласно таблице 2, практически одинаковую мощность ВРД2 можно получить при использовании емкости 50 мкФ для ОКФ и 1000 мкФ для схемы питания с ПБЭ. С учетом того, что требуется два буфера, имеющих в 20 раз большую емкость каждый, массогабаритные показатели и стоимость схемы питания ВРД2 с ПБЭ значительно больше, чем схемы питания с ОКФ. Следовательно, для двигателей средней и большой мощности схема питания с ОКФ имеет преимущество.

Выводы. Предложенная схема питания с одновременной коммутацией фаз позволяет существенно улучшить выходные характеристики ВРД за счет использования энергии отключаемой фазы для форсированного включения тока возбуждаемой фазы. При одинаковых энергетических характеристиках схем с ОКФ и ПБЭ первая имеет лучшие экономические и массогабаритные показатели. Схема с ОКФ перспективна для применения в ВРД средней и большой мощности, а также при питании ВРД от сети переменного тока.

Список литературы

- 1. Ткачук В.І. Явнополюсні вентильні реактивні двигуни з буферами енергії: автореф. дис. на здобуття наук. ступеня докт. техн. наук: спец. 05.09.01 «Електричні машини і апарати» / В.І Ткачук. Львів, 1999. 40 с.
- 2. Захарченко П.И. Перспективные схемы силовых преобразователей вентильных реактивных двигателей. / П.И. Захарченко, Л.А. Васильев, Ю.В. Мнускин // Наукові праці Донецького державного технічного університету. Серія: "Електротехніка і енергетика", випуск 50: Донецьк: ДонДТУ, 2003. С. 15-18.
- 3. Васильев Л.А. Особенности работы вентильного реактивного двигателя от сети переменного тока. / Л.А. Васильев, Ю.В. Мнускин, А.И. Лужнев // Праці Луганського відділення Міжнародної академії інформатизації. № 2 (19), частина 1: Луганськ, 2009. С. 24-28.

Надійшла до редколегії 27.04.2009

Л.А.ВАСИЛЬЕВ, Ю.В.МНУСКИН, А.И. ЛУЖНЕВ

Донецкий национальный технический университет

Одновременная коммутация фаз и ее влияние на выходные характеристики ВРД. Рассмотрены возможности повышения эффективности преобразования энергии в вентильных реактивных Проанализированы двигателях. схемы питания двигателей с емкостными буферами энергии и с одновременной коммутацией фаз. Рассчитаны выходные характеристики и показано преимущество схемы с одновременной коммутацией фаз для двигателей средней и большой мощности.

Вентильный реактивный двигатель, фаза, коммутация, выходные характеристики.

Л.О.ВАСИЛЬЄВ, Ю.В. МНУСКІН, О.І.ЛУЖНЄВ

Рецензент: Є.Б.Ковальов

Донецький національний технічний університет

Одночасна комутація фаз і її вплив на вихідні характеристики ВРД. Розглянуті питання можливості підвищення ефективності перетворення енергії у вентильних реактивних двигунах. Проаналізовані схеми живлення двигунів з ємнісними буферами енергії і з одночасною комутацією фаз. Розраховані вихідні характеристики і показана перевага схеми з одночасною комутацією фаз для двигунів середньої і великої потужності.

Вентильний реактивний двигун, фаза, комутація, вихідні характеристики.