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This study is devoted to the investigation of phase
transition (PT) in a one-dimensional classical system
and to the determination of the dependence of the crit-
ical parameters on the characteristics of the model
interaction potential. One of the approaches to the
determination of the correlation between macroscopic
properties of a substance and its microscopic character-
istics is based on the calculation of the partition func-
tion 

 

Z

 

. From this standpoint, this study is a further
development of [1, 2]. For 

 

N

 

 monatomic particles of the
system, the calculation of the kinetic part of 

 

Z

 

 presents
no difficulties. As is known, the calculation or estima-
tion of the configuration part of 

 

Z

 

 is a complex prob-
lem.

In [3], an expression for the logarithm of the config-
uration integral was found in the quadratic approxima-
tion of the saddle-point method,

where 
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 is the dimensionality of space; 
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 = 1/
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inverse temperature (Boltzmann constant 
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 is the density; and 

 

v
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 and 
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 denote the
pair central interaction potential and its Fourier trans-
form, respectively. The calculation of thermodynamic
functions is performed by standard methods using the
free energy. Thus, the equation of state of the system
being treated has the form

 

(1)

 

The fundamental approximation, which may be
used for any liquids, implies that their properties are
largely defined by the repulsive part of the potential [4].
This assumption is supported by the results of [5] in
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numerical simulation of a liquid, which agree with
experimental data for real liquids. Therefore, for the
sake of simplicity of the calculations, we will take into
account only the repulsive forces, and the form of the
interaction potential will be preassigned by a monoton-
ically decreasing function of 

 

r

 

,

 

(2)

 

with a positive Fourier transform,

 

(3)

 

Within the framework of the suggested model, we
integrate Eq. (1) to find

 

(4)

 

One can use the equation of state (4) to obtain a
detailed description of the subcritical region, similar to
the description obtained using the van der Waals equa-
tion. Traditional conditions defining the critical state
are provided by the set of equations

 

(5)

 

whose solution is easy and permits an exact representa-
tion of the critical parameters,
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ṽ 0( ) aβṽ 2 0( )
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These parameters make it possible to reduce the equa-
tion of state (4) to the dimensionless form

(7)

Here, τ = βc/β and ϕ = nc/n denote the reduced tem-
perature and volume, and Zc . 0.275 is the compress-
ibility factor. The form of Eq. (7) is convenient for the
construction of isotherms which have a characteristic
S-like shape indicative of the first-order PT. By follow-
ing the procedure described in [6], one can find in the
neighborhood of the critical point (CP) the expressions
for the density of coexisting phases and for the density
in metastable states in the form of expansions in powers
of the dimensionless temperature.

We will treat a less trivial one-dimensional model,
for which the pair potential

(8)

has features of “real” properties (presence of the poten-
tial well, repulsion at small distances, and attraction at
large distances); however, it is limited at zero, v(0) =
A/2a. The simple analytical form of the model potential
makes it possible to determine its minimum and find a
Fourier transform,

(9)

which is nonnegative if the inequality A ≥ B is valid.
This is the condition of validity of approximation (1) at
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any temperature, because, in this case, the integrand in
(1) has no singular points.

To find the equation of state for a system with poten-
tial (8), we integrate (1) with due regard for the Fourier
transform (9). As a result, we derive

(10)

where  = (0) = (A – B)/a2, d = (A + B)/(A – B), and

q = . One can demonstrate that, in the limit
B  0, equation of state (10) assumes the form of (4),
and potential (8) transforms to (2). A set of equations
that is similar to (5) but more cumbersome (here it is
represented in a compact form) defines the critical state
of model (8),

(11)

Q = .

An exact solution of such a system appears to be
rather complicated and has not yet been obtained. Nev-
ertheless, at least two approaches exist to the construc-
tion of its solution. The first approach is based on the
representation of solutions based on the perturbation
theory in the form of series in powers of small parame-
ter: the attractive part of potential (8) is approximated
by the second term, which may be treated as a small
perturbation. The second approach implies the use of
numerical methods of solution for any values of B that
satisfy the inequality A ≥ B. Obviously, both
approaches must reflect the dependence of the critical
parameters on the characteristics of the interatomic
potential. However, the second approach is preferred,
because it enables one to draw more complete qualita-
tive and quantitative conclusions. To realize this latter
approach, it is convenient to reduce the set of equations
for determining the CP to a single nonlinear equation
relative to the dimensionless quantity ncβc  by way of
dividing the first equation of the set by the second one,

(12)
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Fig. 1. Dependence of the quantity ncβc  on the parame-

ter d.
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q = .

Equation (12) may have several roots. By the mean-
ing of the problem, only one positive root, namely,
ncβc  = 2/3 at d = 1 (B = 0), is of interest as the initial
one. Note that the point d = 1 is not a branching point
for the roots of Eq. (12), which is solved using the New-
ton method. Figure 1 gives the dependence of ncβc

on the parameter d related to the potential well depth,
which was plotted using 43 points. The range of varia-
tion of the parameter d from unity to 300 corresponds
to the variation of the potential well depth from zero to
99 percent of its maximum value. For the sake of sim-
plicity of further analysis of the results, we will register
the potential parameters a and A. In this case, the depth
of the potential well is controlled by the quantity B. The
function

which defines the minimum of potential (8), is mono-
tonic and assumes the minimum value equal to vm =
−A/2ae2 at B = A (d  ∞).

The critical temperature Tc was calculated by the
equation (∂P/∂n)T = 0, from which follows

(13)

The values of ncβc  required for this purpose and
the respective values of d obtained during the solution
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of Eq. (12) are also used to determine the critical den-
sity, whose value was calculated by the formula

(14)

Figures 2 and 3 give the results of calculation of 
and . One can see that the critical temperature and
density increase with the potential well depth. One can
expect that Tc and nc will approach their asymptotic val-
ues with a further increase in the well depth. If this is
the case, the set of equations for determining the CP
must have a solution in the limit d  ∞. Indeed, in
this case, Eq. (11) takes the form

and its solution is provided by the following values:

where w = A/a2. The respective horizontal asymptotes
are shown in Figs. 2 and 3. The obtained results may be
used for the estimation of the thermodynamic proper-
ties of simple liquids in thin cylindrical pores.
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