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Abstract—A new mechanism of dynamic drag of dislocations is proposed and analyzed. A pair of dislocations
is treated as a linear harmonic oscillator. The dissipation mechanism under investigation involves an irreversible
conversion of the kinetic energy of moving dislocations into the vibrational energy of the dislocation oscillator.
The proposed mechanism is used for calculating the drag force exerted by stationary trapped dislocations on a
moving pair of dislocations and the drag of a solitary dislocation by dislocation dipoles. Radiative drag force
acting on a moving pair of dislocations is also calculated.
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INTRODUCTION

Real crystals usually contain a certain number of
dislocations rigidly trapped by impurity complexes,
dislocation lattice sites, etc., as well as dislocation
dipoles formed by a pair of dislocations with opposite
Burgers vectors. The interaction of moving dislocations
with stationary ones plays a very important role in
strain hardening and plastic deformation processes; for
this reason, a large number of theoretical and experi-
mental research works are devoted to analysis of this
problem [1-3]. In most theoretical publications, the
motion of a solitary dislocation through a forest of flex-
ible or rigid parallel dislocations intersecting the slip
plane of a test dislocation was studied using computer
simulation; the problem was solved in the quasi-static
approximation (for low velocities of dislocations). In
[4], the motion of a single screw dislocation through a
system of parallel screw dislocations was studied for a
high velocity (i.e., for external stresses ¢ > C; =
(ub/2m)n'?, where W is the shear modulus and 7 is the
number density of trapped dislocations). At such veloc-
ities, the motion of the dislocation is controlled by the
dynamic drag mechanisms. Swinging of segments of
forest dislocations by the moving dislocation led to
irreversible loss of its kinetic energy; the drag mecha-
nism studied in [4] was associated precisely with this
process. The results of this publication were used in
review [5]. In [6, 7], the results obtained in [4] were ver-
ified experimentally.

It is well known that edge dislocations located in
parallel slip planes may form stable configurations by
aligning one above another [8]. This process forms the
basis of polygonization, as a result of which dislocation

walls are formed in crystals. The presence of small
groups and dislocation walls is quite typical of the
structure formed during easy glide especially under
large deformations or during local action of bending
moments, when a high density of dislocations predom-
inantly of the same sign appears in a crystal [9]. Under
the action of external stresses, such formations can
move over the crystal. The motion of a pair of edge dislo-
cations in parallel slip planes of a crystal containing ran-
domly distributed point defects was studied in [10, 11].
Energy dissipation occurring in this case due to the con-
version of the kinetic energy of dislocations into the
vibrational energy of dislocation elements about the
dislocation center of mass.

Here, we analyze the motion of a pair of edge dislo-
cations gliding at high velocities over parallel planes
through a system of edge dislocations parallel to this
pair, as well as the slip of a single dislocation interact-
ing with stationary dislocation dipoles parallel to it. A
pair of dislocations is a linear harmonic oscillator the
vibrations of which can be excited due to the interaction
with stationary dislocations. The dissipation mecha-
nism involves irreversible conversion of the kinetic
energy of moving dislocations into the energy of their
vibrations relative to the center of mass of the disloca-
tion pair. Such a mechanism has not been proposed or
analyzed earlier.

THEORETICAL ANALYSIS

Let us suppose that two infinitely long edge disloca-
tions move under the action of a constant external stress
O, in parallel planes: one dislocation moves in the x, z
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plane (i.e., y = 0), and the other moves in the plane y =
a, where a is the distance between two slip planes. Dis-
location lines are parallel to the z axis, their Burgers
vectors have coordinates (b, 0, 0) (i.e., these lines are
parallel to the x axis), and the center of mass of the
given dislocation pair moves at a constant velocity v in
the positive direction of this axis. The lines of station-
ary edge dislocations are assumed to be rigid; these
lines are also parallel to the z axis. For simplicity, we
assume that their Burgers vectors are the same as the
vectors of glide dislocations. The interaction of moving
dislocations with stationary ones gives rise to oscilla-
tions of moving dislocations in their slip planes relative
to plane x = vz perpendicular to these planes. The posi-
tion of dislocations is described by the functions

X (y=0;1) = vi+w (y=0;1),

(1)
Xo(y=a;t) = vi+wy(y=a; 1),

where w,(y =0, z, f) and w,(y = a, z, f) are random quan-
tities the value of which averaged over the dislocation
ensemble is zero. The motion of each dislocation is
defined by the equation

man —B%. )

b[c50+c5 3

(vi+wi; 2)] + Fy

Xy

Here, k = 1, 2 is the number of a moving dislocation; m
is its mass per unit length (for simplicity, we assume
that the masses of dislocations are identical); B is the
damping constant controlled by the phonon, magnon,
electron, or other dissipation mechanisms characterized
by a linear dependence of the drag force acting on a dis-
location on its sliding velocity; c is the velocity of prop-

. . . k
agation of transverse acoustic waves in the crystal; o,

is the tensor component of stresses produced by station-
ary dislocations on the line of the kth moving disloca-
tion,

N
_ k
= 2 0.0

i=1

N is the number of stationary dislocations in the crystal;
and F, is the force of interaction of dislocations with
one another, which is defined, according to [8], as

2
de - bMX(x y) bl‘gw’
}" a (3)
N
2n(1-v)’

where 7 is the Poisson ratio. Here, we assume that w <<
a (approximation of small oscillations) and r = a. Two
edge dislocations lying in parallel slip planes located
one above another form a linear harmonic oscillator. To
verify this, let us consider these dislocations in a coor-
dinate system associated with their center of mass and
write the equation of their motion,
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where L is the dislocation length and D is a quantity on
the order of the crystal size. Let us numerically estimate
the vibrational frequency of the dislocation oscillator.
For v=102c=30m/s, b=3x 10""9m, and a = 10b =
3 x 10~ m, we obtain ®,= 10'?s~!. The influence of vis-
cous drag produced by the phonon subsystem on damp-
ing of dislocation oscillations can be neglected pro-
vided that @, > B/m; this condition can approximately
be written in the form

"n¢s B. (5)
a
Form=10"kgm',a=10b=3%x10"m,andc=3 =
10° m s7!, we find that this condition is satisfied for B <
10 Pa s (i.e., practically for any value of the damping
constant).

Using the methods developed earlier in [10-13], we
can derive the following expression for the drag force
exerted on each dislocation:

Fe {5

dp)lp ||Gxx(p)| 8(va _0‘)0)

(6)

where n is the number density of stationary dislocations

and o( pi v — 0)(2) ) is the Dirac delta function reflecting
the dissipation mechanism under investigation, viz.,
conversion of the kinetic energy of translational motion
of a dislocation into the energy of its vibrations at fre-
quency . Furthermore, 6,,(p) = 0,,(p,, p), 0) is the
Fourier transform of the tensor of stresses produced by
a stationary dislocation, which in our case has the form

2Mblpxpv
1-v p
(p. =0, since not a single quantity depends on coordi-

nate z). Symbol (...) indicates averaging over a random
configuration of stationary dislocations in the crystal,

0,,(p) = (7

() = ﬂ_[f( ), ®)
si=1

Here, S is the cross-sectional area of the crystal perpen-
dicular to dislocation lines. In averaging in accordance
with the standard procedure, number of dislocations N
and cross-sectional area S tend to infinity, and their
ratio remains constant and equal to the average disloca-
tion density. After transformations, we obtain the fol-
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lowing expression for the dynamic drag force exerted
by a system of stationary dislocations on a moving dis-
location:
__ nby
16may(1-7)°v

znbzuaé = nouag. )

Here, n, = nb? is the dimensionless density of trapped
dislocations.

Thus, the dislocation drag force controlled by this
mechanism is inversely proportional to the dislocation
slip velocity; in other words, such a force cannot ensure
dynamic stability of motion of dislocations since it can
be stable only in the presence of quasi-viscous forces
(e.g., of phonon or magnon origin). The presence of
force (9) leads to the emergence of a critical velocity,
below which stationary motion of dislocations is ruled
out. This velocity can be determined from the condition
F = Bvand is given by

ubz n

Ve T (1 —y)\moyB’

(10)

RESULTS AND DISCUSSION

Let us estimate numerically the drag force exerted
by stationary dislocations on a glide dislocation for typ-
ical values of parameters for metals: 1L = 3 x 10! N m~
and b = 3 x 10719 m. Then drag force F = 10~ N/m for
n=102m?2 v=102%2 =30m/s, and a = 10b = 3 X
107 m. This drag force is comparable in order of mag-
nitude to the quasi-viscous force of the phonon origin
for a damping constant of B = 10> Pa s. For a = 1000 =
3 x 10~® m, we obtain F = 103 N/m and B = 10~ Pa s.

It should be noted that our results differ from those
obtained in [10, 11], where the slip of a pair of edge dis-
locations was also studied. In these publications, the
string model was used, the equation of motion con-
tained the second derivative with respect to the coordi-
nate, dislocations were decelerated by point defects
(local obstacles of spherical symmetry), the drag mech-
anisms involved excitation of flexural oscillations of
dislocations, and the role of the dislocation interaction
was reduced to a rearrangement of the spectrum of
these oscillations. Here, we are not using the string
model, the derivative with respect of the coordinate
does not appear in the equation of motion, and the drag
is due to stationary dislocations, viz., extended linear
objects with cylindrical symmetry. It is this symmetry
of the problem that has made it possible to study the
new mechanism involving the excitation of oscillations
of a dislocation oscillator.

This energy dissipation mechanism is also operative
when a single dislocation moves through a system of
stationary dislocation dipoles parallel to this disloca-
tion. In this case, the kinetic energy of the moving dis-
location is transformed into the vibrational energy of a
dipole, which is also a linear harmonic oscillator. Pass-
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ing to a system of coordinates associated with the
dipole, we can easily verify that the drag force exerted
on the solitary dislocation by dislocation dipoles paral-
lel to it can also be described by formula (9), the only
difference being that in this case a is the distance
between the dislocations forming the dipole and # is the
number density of dipoles [12].

Vibrations of a dislocation relative to the center of
mass of a dislocation pair must lead to the emission of
elastic waves (i.e., radiative friction) by the dislocation.
Radiative friction was studied by many authors (see
review [5]), but they analyzed nonuniformity of the
motion of dislocations associated with slip over the
Peierls relief. According to [5], to solve the problem of
radiative friction correctly, it is necessary to determine
the law of motion of a dislocation self-consistently tak-
ing into account the response of radiation. In our case,
it is impossible to solve this problem analytically; how-
ever, for rough estimates, we can use the result obtained
in [14] under the assumption that the entire radiation is
emitted at a single mode. It was demonstrated in [15]
that such an assumption is equivalent to the hypothesis
of the smallness of perturbation; i.e., radiative friction
in this case is a small correction to the drag of a dislo-
cation pair, which is produced by its interaction with
stationary dislocations.

According to [14], the energy emitted per unit time
by a unit length of dislocation oscillating at frequency
o is defined as

1 2.2,
R = 3 2ub Lk"w;

Here, L is the amplitude of dislocation oscillations.
The radiative friction force is calculated by the formula
Fr=R/bv. In the case considered here, we can obtain a
rough estimate by calculating the mean square devia-
tion (w?) of a dislocation from its stable equilibrium
position:

k=2 (11)
C

2
L= (w)= noazc—z.
v

(12)

Using formula (11), we obtain the radiative friction
force acting of a dislocation in the form

reonai)s)

Let us compare drag force (9) emerging due to the inter-
action of a moving dislocation with trapped disloca-
tions to the radiative friction force:

(13)

FR b C 2
— == . 14
F (a v) (14
Formula (13) is valid for F < F, i.e., for
Vst (15)
c a
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Since the model used here is valid for velocities ¢ > v,
the maximal admissible velocity is on the order of v =
107'¢; consequently, condition (15) is valid only for
a > 10%b. Let us estimate the order of magnitude of the
radiative friction force for v = 107!c, a = 10b, = 3 X
10" N m?, and b = 3 x 107'° m. This gives Fr = 10 N/m
for stationary dislocation density n = 10'> m2 m (i.e.,
ny = 107).

The proposed drag mechanism may considerably
affect the motion of dislocations (especially in metals).
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