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It is known that two parallel dislocations with oppo-
sitely directed Burgers vectors located in parallel
planes can form a stable configuration: dislocation
dipole. Especially many dipoles are formed in a crystal
in the easy-slip stage. The presence of dipoles is a char-
acteristic feature of this deformation stage for metals
and alkali halide crystals [1]. Since a dipole consists of
dislocations with oppositely directed Burgers vectors, it
cannot move in the slip planes of its dislocations; how-
ever, these dislocations can vibrate around the immo-
bile center of mass of the dipole. Immobile dislocation
dipoles can significantly affect the slip of mobile dislo-
cations. The interaction of moving dislocations with
immobile ones plays a very important role in the pro-
cesses of strain hardening and plastic deformation;
therefore, this problem was investigated in many exper-
imental and theoretical studies [2–6]. In most theoreti-
cal studies, the motion of a single probe dislocation
through a forest of flexible or rigid parallel forest dislo-
cations intersecting the probe dislocation slip plane was
investigated by computational methods; the problem
was solved in the quasi-static approximation (small dis-
location velocities). The motion of a single screw dislo-
cation through a system of screw dislocations (oriented
parallel to it) with a high velocity (i.e., at an external
stress 
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 is the shear modu-
lus and 
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 is the density of fixed dislocations) was theo-
retically investigated in [6]. At such velocities, the dis-
location motion is limited by the dynamic mechanisms
of drag. Swinging of segments of forest dislocations by
a moving dislocation led to irreversible loss of its
kinetic energy; this is the essence of the drag mecha-
nism investigated in [6]. The results of this study were

used in [7]. As applied to experiments, study [6] was
discussed in [8, 9]. Mikaelyan et al. [2] studied the spe-
cific features of the slip of a single dislocation near an
immobile dipole of partial wedge disclinations on the
basis of their own computer code. 

In this study, we analyze the effect of edge disloca-
tion dipoles on the character of slip of single edge dis-
locations. Consideration of the dislocation dipole effect
is important because (for example, according to [10])
most dislocations are strictly edge ones in nickel–
cobalt alloy single crystals; on average, up to 85% of all
dislocations form dipoles. A pair of edge dislocations
of opposite sign, forming a dipole, is a linear harmonic
oscillator, whose oscillations can be excited by the elas-
tic field of a moving edge dislocation. The dissipation
mechanism is in irreversible transformation of the
kinetic energy of a moving dislocation into the vibra-
tional energy of the immobile dislocation dipole. Such
a mechanism has not been proposed and analyzed pre-
viously. 

It is known that the velocities of dislocation motion
in a crystal form two ranges [7]: range of thermally
activated motion, where the local barriers formed by
defects are overcome via thermal fluctuations, and the
dynamic range, where the kinetic energy of dislocation
motion exceeds the energy of interaction with local
obstacles; hence, the dislocation motion can be
described by dynamic equations. Although the dynamic
range begins at high velocities (
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c

 

 is the propagation velocity of transverse sound
waves), as was noted in [7], the dynamical mechanisms
of dissipation can also play an important role in fluctu-
ation overcoming of barriers by a moving dislocation.
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At the same time, the range of high slip velocities for
soft metals (copper, zinc, aluminum, lead, etc.) begins
at relatively low external stresses.

In this paper, we report the results of studying the
motion of edge dislocations in the dynamic range of
velocities. Let an infinite edge dislocation move in the

 

XOZ

 

 plane under constant external stress 

 

σ

 

0

 

. The dislo-
cation line is parallel to the 

 

OZ

 

 axis and its Burgers vec-
tor has the coordinates (

 

b

 

, 0

 

, 0), i.e., parallel to the 

 

OX

 

axis, in whose positive direction the dislocation moves
with a constant velocity 

 

v

 

. The lines of the edge dislo-
cations forming a dipole are assumed to be rigid; they
are also parallel to the 

 

OZ

 

 axis and, for simplicity, their
Burgers vectors are assumed to be the same as the slip
dislocation vector. In addition, all dipoles are consid-
ered to be identical. The dipoles are randomly distrib-
uted over the crystal. The equation of dislocation
motion has the form

 

(1)

 

Here, 

 

m

 

 is the mass of a dislocation part of unit length,
which, according to [1], is determined by the expres-
sion

 

(2)

 

where 

 

ρ

 

 is the crystal density, 

 

L

 

 is a value of about the
dislocation length, and 

 

γ

 

 is the Poisson ratio. 

 

B

 

 is the
damping constant, which is caused by phonon, mag-
non, electron, or some other dissipation mechanisms,
characterized by a linear dependence of the drag force
of a dislocation on its slip velocity, and 

 

F

 

dip

 

 is the dislo-
cation drag force, caused by the excitation of disloca-
tion dipole vibrations.

The above-described scheme was experimentally
observed in the easy-slip stage in copper single crystals
[11], where dipoles formed by edge dislocations of
opposite sign lay in the (111) plane and were parallel to

the [ ] direction. Similar dipoles in copper crystals

in the 

 

(111)[ ]

 

 slip system, oriented in the [ ]
direction, were also observed in [12]. Parallel edge-dis-
location dipoles were revealed in the easy-slip stage in
nickel–cobalt alloy single crystals [10] and in brass
[13]. Dipoles of this type exist not only in metals. Par-
allel dislocation dipoles in the (111) plane of natural

diamond, oriented in the 

 

[ ]

 

 direction, were
observed in [14]. 

As a result of interaction of moving dislocations
with dipoles, the dislocations forming a dipole begin to
vibrate in their slip planes around the center of mass of
the dipole. The position of the dipole dislocations is
determined by the functions

 

(3)

m
∂X

2

∂t
2

--------- c
2∂2

X

∂z
2

---------–
 
 
 

bσ0 Fdip– B
∂X
∂t
-------.–=

m
ρb

2

4π 1 γ–( )
----------------------- L

b
---,ln=

110

011 211

112

X1 t( ) X1 w1 t( ), X2 t( )+ X2 w2 t( ),+= =

 

where 

 

w

 

1

 

(

 

t

 

)

 

 and 

 

w

 

2

 

(

 

t

 

)

 

 are random variables and 
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 are the stable equilibrium positions of the first and
second dislocations. The position of the center of mass
of the dipole is 
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0
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. The force on the first
dipole dislocation from the second dislocation, placed
at the origin of coordinates, is determined (according to
[15]) by the expression
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where 

 

γ

 

 is the Poisson ratio and 

 

a

 

 is the distance
between dipole dislocations. Here, we took into
account that 
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 (approximation of small vibrations)
and 

 

r

 

 

 

≈

 

 

 

a

 

. Dislocation dipoles are linear harmonic oscil-
lators. To make sure of this, let us consider these dislo-
cations in the center-of-mass system and write the
equation of motion for them:
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where 

 

k

 

 = 1, 2 is the dislocation number and 

 

m

 

 is the
mass of dislocation part of unit length (for simplicity,
the dislocation masses are assumed to be identical). The
effect of viscous drag, formed by the phonon sub-
system, on the decay of dislocation vibrations can be
neglected if 
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0
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; this condition can be approxi-
mately written as 

 

(

 

mc/a) � B. For m = 10–15 kg m–1, a =
10b = 3 × 10–9 m, and c = 3 × 103 m s–1, we find that this
condition is satisfied for B ≤ 10–4 Pa s, i.e., practically
at any value of the damping constant. 

In principle, a moving dislocation can affect the
dipole state not only directly (i.e., exciting its vibrations
by elastic field) but also indirectly, displacing the dislo-
cations of other dipoles. However, it was shown in [16]
that the stress field of dislocations of opposite sign,
forming a dipole, neutralize each other at large dis-
tances; i.e., dipoles form low long-range stresses. In
this study, we investigated the case where the distance
between dipoles significantly exceeds that between dis-
locations in a dipole; thus, according to [16], the inter-
action between dipoles can be neglected. Such a situa-
tion is typical of metals in the easy-slip stage. For
example, according to [10], the maximum distance
between dislocations in a dipole is on the order of 10–8 m,
while the distance between dipoles is on the order of
10–6 m even for the dipole density n ≈ 1012 m–2.

Let us estimate the dislocation oscillator frequency.
For the values a = 100b = 3 × 10–8 m and a = 10b = 3 ×
10–9 m, we obtain the frequencies ω0 = 1011 and 1012 s–1,
respectively. 

Applying (as in [17–19]) the Green’s function
method and assuming the vibrations of dipole disloca-

Fdis = b
2
M

x1 x1
2

y1
2

–( )

r
4

--------------------------
b

2
Mw1

a
2

-----------------, M≈  = 
µ

2π 1 γ–( )
-----------------------,
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tions to be small (w � a), we obtain the expression for
the dipole-induced drag force for a moving dislocation
in the second order of perturbation theory:

(6)

where n is the density of dislocation dipoles and

δ(  – ) is the Dirac δ function reflecting the dis-
sipation mechanism under consideration: transforma-
tion of the kinetic energy of translatory motion of a slip
dislocation into the energy of dipole dislocation vibra-
tions with a frequency ω0. The symbol 〈…〉 means aver-
aging over the random distribution of dipoles in the
crystal (dipoles can be at an arbitrary place of the crys-
tal, remaining parallel to each other and to the slip dis-
location). Then, σxy(p) = σxy(px, py, 0) is the Fourier
transform of the tensor of stresses formed by the edge
dislocation; in our case, it has the form

(7)

(pz = 0 because there are no terms dependent on the z
coordinate). Here, i is the imaginary unit.

Carrying out transformations, we obtain the expres-
sion for the dynamic drag force on a moving dislocation
from the system of dislocation dipoles: 

(8)

Here, n0 = nb2 is the dimensionless dipole concentra-
tion. 

Let us analyze the dependence of the obtained drag
force on the parameters of the problem. It follows from
formula (8) that this force decreases with a decrease in
the distance between the dipole dislocations. This result
is quite reasonable: a decrease in the distance between
dislocations increases their attraction and hinders exci-
tation of dipole vibrations by a moving dislocation
(recall that the dissipation mechanism under study is
the irreversible transformation of the kinetic energy of
a moving dislocation into the dipole vibration energy).
At a = 0, we have Fdip = 0, which is also quite natural:
a dipole consists of dislocations of opposite signs.
When combined, they annihilate (i.e., the dipole disap-
pears), and, therefore, the drag force generated by this
dipole disappears as well. Concerning the limiting tran-
sition v  0, it is not justified in this problem,
because the expression for the drag force is derived in
the dynamic range of velocities, i.e., when the kinetic
energy of a dislocation exceeds the energy of its inter-
action with other defects. Note that the velocity depen-
dence of the drag force of the F ~ v –1 type is not excep-
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tional or very rare. Such dependences were obtained in
[19, 20] for the drag force on an edge dislocation from
point defects in the dynamic range and in [21] for the
dislocation drag by heavy impurity atoms, with allow-
ance for possible excitation of quasi-local impurity
vibrations. The mechanism of emission of elastic waves
by a dislocation in the field of impurity centers, similar
to the radiative friction mechanism, was investigated in
[22]. The drag force obtained in [22] is also propor-
tional to v –1 in the range of high velocities. In the ther-
mofluctuation range, the velocity dependence of the
drag force on a dislocation from the Cottrell atmo-
sphere becomes proportional to v –1 when the disloca-
tion begins to separate from its atmosphere with an
increase in velocity [23]. 

A drag force that is inversely proportional to the slip
velocity cannot provide stable stationary motion of a
dislocation. In our case, slip stability is provided by the
quasi-viscous force of phonon or another origin, which
enters the equation of motion. The drag force from
dipoles limits from below the possible velocities of sta-
tionary motion of a single dislocation, because such
motion is stable only at Bv > Fdip; i.e., the minimum sta-
tionary velocity is determined by the condition

(9)

Let us numerically estimate the drag force per disloca-
tion unit length, taking the values (typical of metals) µ =
3 × 1010 N m–2 and b ≈ 3 × 10–10 m. Then, for
n ≈ 1012 m–2, v ≈ 10–2 c ≈ 30 m/s, and a ≈ 10b ≈ 3 ×
10−9 m, we have the drag force F ≈ 10–4 N/m. This value
is comparable in order of magnitude with the quasi-vis-
cous force of phonon origin at the damping constant
B ≈ 10–3 N/m. For a ≈ 100b ≈ 3 × 10−8 m, we have F ≈
10–3 N/m and B ≈ 10–4 Pa s.

Deriving formula (8), we assumed all dipoles to be
identical. Obviously, under real conditions this does not
hold true. However, since the drag force is proportional
to the distance between dipole dislocations, averaging
of expression (8) over this force leads only to replace-
ment of the parameter a by its mean. 

The drag mechanism proposed here can signifi-
cantly affect the character of dislocation motion in the
easy-slip stage. 
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