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Dislocation loops, which can form in a crystal dur-
ing, e.g., irradiation of materials [1] and annealing and
quenching of them [2], have a significant effect on the
glide of straight dislocations and, therefore, on the
mechanical properties of crystals [3]. Dislocation loops
have been investigated in a large number of publica-
tions (see, e.g., [3–8]). The most thorough study of
these defects was carried out in [4–7]. 

The range of velocities of dislocations in a crystal
can be divided into two regions [9], namely, a region of
thermally activated motion, during which local barriers
produced by defects are surmounted through thermal
fluctuations, and a dynamic region in which the kinetic
energy of moving dislocations exceeds the interaction
energy with local obstacles and, therefore, the motion
of dislocations can be described by dynamic equations.
The dynamic region begins at high velocities 

 

v

 

 

 

≥

 

 10

 

–2

 

c

 

,
where

 

 c

 

 is the velocity of transverse acoustic waves.
However, as indicated in [10], the dynamic mecha-
nisms of dissipation can also be important when mov-
ing dislocations overcome barriers through fluctua-
tions. Moreover, for soft metals, such as copper, zinc,
aluminum, and lead, the dislocation glide velocities
become high under relatively low external stresses. 

In the dynamic region, the interaction of a single
dislocation with phonons was analyzed in detail in
review [9], with conduction electrons, in review [10],
and with point defects, in [11–15]. To the best of our

knowledge, the dynamic interaction of a dislocation
with dislocation loops has not yet been studied. 

As is well known [3], dislocation loops are divided
into prismatic and glide loops, whose Burgers vector is
normal to the loop plane and lies in this plane, respec-
tively. 

The objective of this work is to study the dynamic
regime of glide of an edge dislocation in the elastic field
of circular dislocation loops (for both prismatic and
glide loops). 

Let us consider an infinite edge dislocation gliding
at a constant velocity 

 

v

 

 along the positive direction of
the 

 

X

 

 axis under a static external stress 

 

σ

 

0

 

. The disloca-
tion line is parallel to the 

 

Y

 

 axis, and its Burgers vector
is parallel to the 

 

X 

 

axis. The glide plane of the disloca-
tion coincides with the 

 

XY

 

 plane, and the position of the
dislocation is described by the function

(1)

where 

 

w

 

(

 

z 

 

= 0, 

 

y

 

, 

 

t

 

) is a random quantity, which
describes oscillations of elements of the edge disloca-
tion in the glide plane relative to the unperturbed dislo-
cation line. 

The equation of motion of the dislocation is

(2)
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Abstract

 

—The glide of an edge dislocation in a crystal containing circular dislocation loops is studied theoret-
ically. An analytical expression is obtained for the drag force exerted on a dislocation by various types of dis-
location loops, and it is shown that this force depends significantly on the orientation of the Burgers vector of
immobile dislocation loops with respect to the gliding dislocation line. The 

 

F

 

||

 

/

 

F

 

⊥

 

 ratio of the drag force for the
parallel orientation of the Burgers vectors of the loops with respect to the gliding dislocation line (

 

F

 

||

 

) and the
drag force for the perpendicular orientation (

 

F

 

⊥

 

) is equal to 

 

K

 

(

 

v

 

/

 

c

 

)

 

2

 

, where 

 

v

 

 is the velocity of the dislocation;

 

c

 

 is the velocity of acoustic waves in the crystal; and 

 

K

 

 is a dimensionless coefficient, whose value is of the
order of the ratio of the concentrations of dislocation loops with parallel and perpendicular orientations of the
Burgers vector. 
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Here, 

 

σ

 

xz

 

 is the stress tensor component produced by

dislocation loops on the dislocation (

 

σ

 

xz

 

 = ,

where 

 

N

 

 is the number of loops in the crystal); 

 

b

 

 is the
magnitude of the Burgers vector of the dislocation; 

 

m

 

 is
the dislocation mass per unit dislocation length; 

 

B

 

 is the
damping constant due to phonons, magnons, electrons,
or other mechanisms of dissipation characterized by a
linear dependence of the dislocation drag force on the
dislocation velocity; and 

 

c

 

 is the velocity of transverse
acoustic waves in the crystal. As in [11–15], we neglect
the influence of the damping constant on the drag force
exerted on the dislocation by loops, because the dimen-
sionless parameter 

 

α

 

 = 

 

Bb

 

v

 

/

 

mc

 

2

 

 is small. According to
estimates [11], this parameter is small in almost all
cases. 

Based on the results obtained in [12], we write the
dynamic drag force exerted on the dislocation by circu-
lar dislocation loops in the form 

(3)

where 

 

n

 

S

 

 is the number of dislocation loops per unit

area and 

 

δ

 

(  – ) is the Dirac 

 

δ

 

 function. 

First, we analyze the case where all dislocation
loops are in one plane 

 

z

 

 = const parallel to the glide
plane of the dislocation. For simplicity, we assume that
all loops are identical and have the form of a circle of
radius 

 

a

 

 and that their Burgers vectors are 

 

b

 

0

 

 = –

 

b

 

e

 

y

 

, i.e.,
they are parallel to the dislocation line (see figure).
Since these Burgers vectors are in the loop plane, the
dislocation loops are glide loops. 

In order to determine the dynamic drag force on the
dislocation, we should calculate the Fourier transform
of the stress produced by a dislocation loop. The rele-
vant stress tensor component can be written in the form
[6]

(4)

Here, 

 

γ

 

 is the Poisson ratio; 

 

µ

 

 is the shear modulus; 
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ϕ

 

; and

 

J

 

(

 

m

 

, 

 

n

 

; 

 

p

 

) are Lifshitz–Hankel integrals, which are
defined as

(5)
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where Jm(k) is a Bessel function. Equation (3) is
obtained using the Fourier transformation

(6)

Integrating over the coordinates x and y, the required
Fourier transform is obtained to be

(7)

where J1(qa) is a Bessel function of the first kind and

q = . After some mathematical manipulation,
the drag force exerted on the dislocation by dislocation
loops can be found to be

(8)

(9)
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(11)
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Here, E(k) and K(k) are complete elliptic integrals. The
subscript || in Eq. (8) for the drag force indicates that the
Burgers vectors of the loops are parallel to the disloca-
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Motion of an edge dislocation in the elastic field of circular
dislocation loops.
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tion line. In what follows, it will be shown that their
mutual orientation influences the character of the veloc-
ity dependence of the drag force. From the above for-
mulas, it follows that, when the Burgers vectors of dis-
location loops are parallel to the dislocation line, the
dynamic drag force on the dislocation is proportional to
the velocity of dislocation glide. 

Let us consider limiting cases. If the distance
between the dislocation glide plane and the plane con-
taining dislocation loops is large (z � a), the parameter
k tends to zero in Eqs. (8)–(12). In this case, however, it
is more convenient not to use the final formulas
(because one should expand them to the second order in
k) but rather to employ the initial formulas (3) and (7).
Due to the presence of the exponent exp(–q |z |), the
dominant contribution to the integral comes from the
region 1 ≥ q |z | or, since z � a, from the region 1 � qa.
Therefore, we can replace the Bessel function by its
asymptotic small-argument expression, J1(qa) ≈ qa/2.
In this case, integration can be easily carried out and the
drag force on the dislocation is obtained to be

(13)

For rough qualitative estimates, we use the approxi-
mate expression for the dislocation mass m ≈ ρb2 [8]
(where ρ is the crystal density) and also take into
account that the expression in square brackets in
Eq. (13) is of the order of unity. Introducing the dimen-
sionless concentration of loops n0S = nSa2 and using the
expression c2 = µ/ρ, we thus obtain

(14)

If loops are located in the planes z = L and –L (sym-
metrical about the glide plane), L � a, and the density
of loops is identical in these planes, then the drag force
is twofold greater:

(15)

Now, we consider the case where dislocation loops
are located in equidistant planes. The spacing between
the planes is far greater than the loop radius (L � a),
and the loop concentration is the same in all planes. In
this case, the expressions for the drag forces exerted on
the dislocation by loops in each plane differ only in
terms of the distance to the dislocation glide plane (see
Eq. (13). Since the distance to the nth plane is z = nL,
the calculation of the total drag force on the edge dislo-
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cation reduces to summing the generalized harmonic

series  = ζ(3) ≈ 1.2. Thus, the total drag force

is F|| = 1.2F2; i.e., the main contribution to the drag of
the dislocation comes from the two nearest planes, with
the contribution from the other loops being only 20% in
this case. 

The initial expression for the drag force is obtained
in the small-amplitude oscillation approximation (the
mechanism of dissipation under study involves excita-
tion of small-amplitude oscillation of the dislocation in
its glide plane), i.e., in second-order perturbation the-
ory. Therefore, we should verify the applicability of this
approximation to each specific case. Equations (14) and
(15) are valid if

(16)
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case, according to [6], the relevant stress tensor compo-
nent is given by

(19)

The Fourier transform of this component is

(20)

If all loops are located in one plane z = const, the
dynamic drag force is given by

(21)

The superscript g in Eq. (21) (standing for “glide”) is
introduced because a loop whose Burgers vector is per-
pendicular to the dislocation line can be either a glide
loop (if this vector lies in the glide plane) or a prismatic
loop (if the vector b0 is normal to the glide plane). In
both cases, as shown below, the velocity dependences
of the drag force are similar in character, but the propor-
tionality coefficients are different. The loops whose
vector b0 is parallel to the dislocation line can be only
glide loops in our problem, and a superscript is not
introduced for them. 

Let us consider limiting cases. For large distances
(z � a), we have

(22)

The second expression in Eq. (22) is obtained under
the same assumptions as Eq. (14). If loops are located
in two symmetric planes z = L and z = –L (L � a) with
an equal density, then the drag force is twofold greater,
as in the previous case. If loops are located in equidis-
tant planes separated by a distance L � a, then the drag
force is greater by a factor of 1.2 than that in the case of
two symmetric planes. Equation (22) is valid if
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For z ≈ 10a and v ≈ 10–1c, condition (23) is satisfied at
any value of the loop concentration. For z ≈ 10a and v ≈
10–2c, Eq. (22) holds true at concentrations n0S ≤ 10–4.
If z ≈ 100a, then Eq. (22) is valid for any concentration
and velocities v ≥ 10–2c, i.e., for almost any velocity
corresponding to dislocation motion in the dynamic
region. 

Now, we consider the interaction at small distances
z � a. In this case, the drag force is

(24)

Equation (24) is valid if

(25)

For z ≈ 10–1a and v ≈ 10–1c, condition (25) is satis-
fied at n0S ≤ 10–2. For z ≈ 10–2a and v ≈ 10–2c, condition
(25) reduces to n0S ≤ 10–3. For z ≈ 10–2a and v ≈ 10–1c,
the concentration can have any value. 

Let us compare the drag forces exerted on the dislo-
cation by glide loops with Burgers vectors parallel to
the dislocation line (F||) and with Burgers vectors per-

pendicular to the dislocation line ( ). The ratio
between these forces is given by

(26)

The coefficient Kg is dependent on the concentrations
of loops differing in the orientation of the Burgers vec-
tor and on the elastic moduli of the crystal and differs
somewhat for large and small distances. For example, if
all loops are located in one plane z = const � a or in
equidistant planes separated by a distance L � a, this
coefficient is given by

(27)

If z � a, this coefficient is

(28)

Since the loop concentrations enter the above expres-
sions through their ratio, it makes no difference
whether the concentrations are dimensional or dimen-
sionless. If the loop concentrations are equal, the coef-
ficient depends on the elastic moduli of the crystal only
and is of the order of unity. 
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Now, we consider the interaction of the dislocation
with prismatic dislocation loops, whose Burgers vector
b0 = –bez is perpendicular to the dislocation line. In this
case, the relevant stress tensor component is given by

(29)

and its Fourier transform is

(30)

The drag force exerted on the edge dislocation by such
loops is given by

(31)

Here, the superscript p indicates that the loops with per-
pendicular Burgers vectors are prismatic. At large dis-
tances, the force reduces to

(32)

This formula coincides with Eq. (22) to within a
numerical coefficient. As in the previous case, for loops
located in two symmetric planes, the drag force is two-
fold greater and, for loops located in equidistant planes,
the drag force is greater by a factor of 1.2 than that in
the case of two symmetric planes. The condition of the
validity of Eq. (32) is given by Eq. (23). 

At small distances, the drag force is

(33)

This formula is valid if

(34)

For z ≈ 10–1a and v ≈ 10–1c, condition (34) is satisfied
at n0S ≤ 10–2. For z ≈ 10–1a and v ≈ 10–2c, condition (34)
reduces to n0S ≤ 10–4. For z ≈ 10–2a and v ≈ 10–1c, the
concentration can have any value. 

Now, we compare the drag forces exerted on the dis-
location by loops whose Burgers vector is parallel to
the dislocation line and by prismatic loops whose Burg-
ers vector is perpendicular to both the dislocation line
and the dislocation glide plane. The ratio between these
forces differs from that given by Eq. (26) only in pro-
portionality coefficient:

(35)

σxz r( )
µb0z ϕcos

2 1 γ–( )a
2

-------------------------J 1 1; 2,( ).–=

σxz qx qy z, ,( )
iπµb0a

1 γ–
----------------- z J1 qa( )qx q z–( ).exp–=

F⊥
p β c

v
----Φ1 z( ).=

F⊥
p 3πnS µbb0( )2

a
4

64mvcz
3

1 γ–( )2
-----------------------------------------

3πn0Sµb0
2
a

2
c

64z
3
v

--------------------------------.≈=

F⊥
p nS µbb0( )2

a

16mvc 1 γ–( )2
------------------------------------

n0S

16
-------µb0

c
v
----

b0

a
-----.≈=

a
z
---  � n0S

c
v
----.

F||

F⊥
p

------ K p
v

2

c
2

------.=

The coefficient Kp is different for the different distance
ranges:

(36)

(37)

If loops are arranged in the crystal in such a manner that
their planes are parallel to the dislocation glide plane
but their centers are distributed randomly over the crys-
tal volume, then the ratio of the corresponding drag
forces is also given by expressions analogous to
Eqs. (26) and (35). It is difficult to derive an analytical
expression for the proportionality coefficient in this
case; however, in order of magnitude, it is equal to the
ratio of the corresponding volume concentrations. If
these concentrations are equal, the proportionality
coefficient is of the order of unity. 

Thus, the velocity dependence of the drag force
exerted on the edge dislocation by dislocation loops is
determined not by the type of loops (prismatic or glide
loops) but rather by the mutual orientation of the glid-
ing edge dislocation and the loop Burgers vector. For
the parallel orientation, the drag force varies in propor-
tion to the gliding dislocation velocity and, for the per-
pendicular orientation, it varies in inverse proportion to
the dislocation velocity. 

Let us make numerical estimates. For the case where
the Burgers vector of loops is parallel to the dislocation
line, using n0S ≤ 10–2, µ ≈ 5 × 1010 Pa, b ≈ 3 × 10–10 m,
and a ≈ 10b, we find from Eq. (17) that B|| ≈ 10–6 Pa s.
In order of magnitude, this value is comparable to the
dislocation damping constant due to conduction elec-
trons in normal metals. Therefore, for the parameter
values used, this mechanism of dissipation can domi-
nate only at low temperatures T < 25 K. For the case
where the Burgers vector of loops is perpendicular to

the dislocation line, we find from Eq. (26) that  ≈
(c2/v 2)F||; i.e., the drag force is greater by the factor
c2/v 2. Such loops can have a significant effect on dislo-
cation dynamics even at room temperature. However,
since the drag force caused by loops varies in inverse
proportion to the gliding dislocation velocity in this
case, the dislocation motion can reach a steady state
only in the presence of quasi-viscous drag forces
caused by phonons or other mechanisms of dissipation

and only under the condition that Bv > , which lim-
its the minimum velocity of steady motion of the dislo-
cation. 

The results obtained in this paper may prove helpful
in studying plastic deformation of crystals containing
dislocation loops. 
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