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1. INTRODUCTION 

The presence of point defects, which affect the dis-
location motion in crystals, can have a substantial effect
on the mechanical characteristics of a material. The
influence of point defects on the glide of single disloca-
tions in the dynamic regime has been investigated in a
number of works [1–6]. 

Since the interaction of defects with dislocations
executing motion gives rise to dislocation vibrations,
the efficiency of energy dissipation turns out to be
dependent on the spectrum of these vibrations [3–6]. In
my previous paper [7], the motion of a pair of edge dis-
locations in parallel glide planes was investigated with
due regard for the interaction of the dislocations with
each other and with the phonon subsystem of the crystal
containing randomly distributed point defects. It was
demonstrated that, under certain conditions, the force
of retardation of the dislocation motion as a function of
the velocity of dislocation glide can exhibit two
extrema (a minimum and a maximum) between which
the dislocation motion is unstable. This paper reports
on an analysis of the motion of a single edge disloca-
tion. It will be shown that, under specific conditions,
there can arise two extrema bounding the range of
instability in the system under investigation; however,
the position of the maximum in this case will be deter-
mined by other parameters of the crystal. 

The purpose of this paper is to investigate the glide
of a single edge dislocation in an elastic field of point
defects randomly distributed over a crystal with due
regard for the interaction of the dislocation with the
phonon subsystem of the crystal. In order to take into
account the effect of the phonon subsystem of the crys-
tal on the glide of a single edge dislocation, the equa-

tion of motion of the dislocation, as was done earlier in
[7], is supplemented with an additional quasi-viscous
term. In essence, this means that any dissipation mech-
anism associated with the quasi-viscous retardation of
dislocation motion, in particular, the mechanisms of
interaction of a moving dislocation with electrons and
magnons [8, 9], is included in the analysis. 

2. THEORETICAL ANALYSIS 

Let us consider a uniform glide of an infinitely long
edge dislocation under a constant external stress 

 

σ

 

0

 

 in a
field of point defects randomly distributed in the bulk of
a crystal. The line of this dislocation is parallel to the

 

OZ

 

 axis, and the Burgers vector is aligned parallel to
the 

 

OX

 

 axis. The dislocation moves in the positive
direction of the 

 

OX

 

 axis at a constant velocity 

 

v

 

. The
plane of dislocation glide coincides with the 

 

XOZ

 

plane. The location of the dislocation is determined by
the function 

 (1)

where the function 

 

w

 

(

 

y

 

 = 0, 

 

z

 

, 

 

t

 

) is a random quantity
that describes vibrations of elements of the edge dislo-
cation in the glide plane with respect to the undisturbed
dislocation line. 

Since this study is concerned with the glide of a sin-
gle edge dislocation, the right-hand side of the equation
of motion, unlike the equation of motion in [7], does
not include the term describing the interaction of dislo-
cations with each other (recall that, for the motion of a
pair of dislocations, this interaction determines both the
spectrum of dislocation vibrations and the character of
the retardation of the dislocation motion by point
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defects). The motion of the dislocation can be described
by the equation 

 (2)

Here, 

 

m

 

 is the mass of the dislocation per unit length,
which is determined by the relationship [10] 

 (3)

 

ρ

 

 is the density of the crystal; 

 

L

 

 is a quantity of the order
of the dislocation length; 

 

r

 

0

 

 is a quantity of the order of
the atomic distances (

 

r

 

0

 

 ~ 

 

b

 

); 

 

γ

 

 is the Poisson ratio; 

 

B

 

 is
the damping constant, which accounts for the phonon,
magnon, electron, or other dissipation mechanisms
characterized by a linear dependence of the force of
retardation of the dislocation motion on the velocity of
dislocation glide; 

 

c

 

 is the velocity of propagation of
transverse acoustic waves in the crystal; 

 

σ

 

xy

 

 is the ten-
sor component of the stresses generated by point
defects along the dislocation line; and 

 

σ

 

xy

 

 = 
(here, 

 

N

 

 is the number of point defects in the crystal).
As in our earlier study [3], we use a smooth cutoff of
the stress field of a point defect at distances of the order
of the radius of this defect: 

 (4)

where 

 

R

 

 is the radius of the point defect, 

 

ε

 

 is the mis-
match parameter, and 

 

µ

 

 is the shear modulus. 
As in [2, 7], the dimensionless parameter 

 

α

 

 =

 

βλ

 

v

 

/

 

c

 

2

 

 (where 

 

λ

 

 is the cutoff parameter, 

 

λ

 

 

 

≈

 

 

 

b

 

, and 

 

β

 

 =

 

B

 

/

 

m

 

) is assumed to be small. According to the estimates
made in [2], this condition is satisfied in the vast major-
ity of cases. Therefore, the force of retardation of the
dislocation motion by point defects can be calculated
by ignoring the phonon and other dissipation mecha-
nisms that contribute to the damping constant 

 

B

 

. How-
ever, when analyzing the total retarding force that acts
on the dislocation, these mechanisms should be taken
into account by adding the term 

 

B

 

v

 

. 
As follows from [3, 4], there is a range of dynamic

glide of a single dislocation in which the dislocation
vibrations are described by a nonlinear spectrum: 

 (5)

Here, the quantity 

 

∆

 

d

 

 is the solution of the equation 

 (6)

where 

 

n

 

 is the volume concentration of point defects. 
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It is known that the dynamic interaction of defects
with a single dislocation can occur through the mecha-
nisms of either collective interaction or independent
collisions between the defects depending on the veloc-
ity of dislocation glide [3, 4]. Let τdef ≈ R/v be the time
of interaction between the dislocation and the impurity
atom, where R is the radius of this defect. The time of
propagation of disturbance along the dislocation over a
distance of the order of the mean distance between the
defects is designated as τdef ≈ l/c. In the range of inde-
pendent collisions v > v0 = R∆d, these times satisfy the
inequality τdef < τdis; i.e., the element of the dislocation
for the time of interaction with the point defect is not
affected by other defects. In this range, there are no
solutions to Eq. (6) and, hence, no gap arises in the
spectrum of dislocation vibrations. By contrast, in the
range of the collective interaction (v < v0), we have
τdef > τdis; i.e., the element of the dislocation for the
time of interaction of the dislocation with the point
defect manages to be affected by other defects respon-
sible for the distortion of the dislocation shape. In this
range, the spectrum of dislocation vibrations involves
the gap 

 (7)

where n0 = nR3 is the dimensionless concentration of
point defects. Therefore, unlike the situation described
in [7], where the spectral gap arises from the interaction
between dislocations, exists over the entire range of
velocities under investigation, and depends on the spac-
ing of dislocations, the gap observed in the spectrum of
dislocation vibrations in the given case originates from
the collective interaction of defects with the disloca-
tion, exists only at velocities lower than the critical
velocity v0, and depends on the concentration of
defects. 

According to [3, 4], the force of retardation of the
dislocation motion by point defects can be represented
in the following form: 

 (8)

At v < v0, i.e., in the range of the collective interac-
tion, the force of retardation of the dislocation motion
by defects increases linearly with an increase in the dis-
location velocity: 

 (9)

It follows from expression (9) that the coefficient Bd

depends on the defect concentration (in the case of two
dislocations, this coefficient also depends on the dis-
tance between their glide planes). 

By using the explicit formula (3) for the dislocation
mass and taking into account that, under real conditions
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[10], the quantity ln(L/r0)/(4π(1 – γ)) is of the order of
unity and c2 = µ/ρ, the qualitative evaluation can be per-
formed using the simplified relationship 

 (10)

Relationships (9) and (10) were derived for defects
of the type of dilatation centers with a smooth cutoff of
the strain tensor at distances of the order of the defect
radius, which is described by expression (4). As was
shown earlier in [3, 4], the retardation of the dislocation
motion by impurities at velocities in the range of the
collective interaction is governed by the asymptotic
behavior of the strain tensor in this range, i.e., at short
distances. Furthermore, in our previous paper [11], we
demonstrated that the near asymptotics identical to
asymptotic expression (4) is characteristic of defects
for which the strain vector components ui at short dis-
tances are proportional to (xi/r) ~ cosϕ; i.e., as the dis-
tance decreases, these strains do not tend toward an infi-
nite increase and cease to increase after a limiting value
is reached. Therefore, relationships (9) and (10) hold
true within a constant numerical factor for all defects
satisfying the above condition. 

At v > v0, the force of retardation of the dislocation
motion by point defects is inversely proportional to the
velocity of dislocation glide [3, 4]: 

 (11)

The retarding force for defects such as dilatation cen-
ters has the form 

 (12)

However, it should be noted that relationship (11)
was derived without recourse to the explicit formula for
the tensor of stresses generated by a point defect. This
implies that relationship (11) is valid not only for
defects such as dilatation centers but also for any point
defects for which the stress tensor can be described by
the expression 

 (13)

where A is a coefficient that characterizes the strength
of the point defect and, hence, depends on the elastic
moduli of the crystal and on the sizes of the defect; and
f(r) is an arbitrary function of the distance from the
defect to the point under consideration. Thus, expres-
sion (12) is qualitatively valid for any defects satisfying
formula (13) and the forces calculated for these defects
can differ only by a numerical factor. 
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At v = v0, the force of retardation of the dislocation
motion reaches a local maximum, 

 (14)

It can be seen from this relationship that the local
maximum of the retarding force depends on the con-
centration and strength of the defects and on the elastic
moduli of the crystal. Now, we use the data taken from
[2] to estimate the order of magnitude of the maximum
force Fmax. For ε ≈ 10–1, n0 ≈ 10–3, µ ≈ 5 × 1010 Pa, b ≈
3 × 10–10 m, and R ≈ b, we obtain Fmax ≈ 10–2 N/m. For
comparison, we estimate the maximum retarding force
for the motion of two dislocations. For this purpose, we
use the results obtained in [7] and derive the expression 

 (15)

After substituting the above parameters into this
expression, we obtain the maximum force Fmax ≈
10−3 N/m at a = 10b and Fmax ≈ 10–2 N/m at a = 100b.
For the glide of a single dislocation, the critical velocity
v0 is determined by the concentration of point defects
and, according to the results obtained in [3, 4], corre-
sponds to the transition from the collective interaction
of point defects with the dislocation to independent col-
lisions between the defects: 

 (16)

Recall that, for a pair of dislocations, the critical
velocity v0 depends on the spacing of dislocations and
is independent of the defect concentration. The velocity
v1 at which the total retarding force of the dislocation
motion has a local minimum is determined by the same
relationship both for a single dislocation and for two
dislocations; that is, 

 (17)

The minimum retarding force can be estimated from
the expression 

 (18)

The total retarding force can be approximately eval-
uated from the formula 
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Therefore, the function F(v) for the glide of a single
dislocation has a form identical to that for the glide of
two dislocations; however, the quantities Bd and v0 are
determined by other relationships and, in particular,
have a different dependence on the defect concentra-
tion. 

3. RESULTS AND DISCUSSION 

The dependences of the total force of retardation of
the dislocation motion on the velocity of dislocation
glide for different concentrations of point defects are
schematically depicted in Fig. 1. It follows from this
figure and relationships (16) and (17) that, for the glide
of a single dislocation, the positions not only of the
minima (as is the case with two dislocations) but also of
the maxima shift toward higher velocities with an
increase in the defect concentration. The dependence
F(v) exhibits a minimum and a maximum under the
following condition: 

 (20)

i.e., the critical value of the phonon damping constant
is determined by the defect concentration alone (for a
pair of dislocations, this constant also depends on the
distance between the dislocation glide planes). 

Figure 2 schematically shows the dependences of
the total force of retardation of the dislocation motion
on the concentration of point defects. For a defect con-

centration n < n1 = , the retarding force is inde-

pendent of the defect concentration because the phonon
subsystem of the crystal makes a dominant contribution
to the retardation of the dislocation motion. For a dislo-
cation velocity v ≈ 10–2 c, we obtain n1 ≈ 10–4. In the
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case when the defect concentration lies in the range n1
< n < n2, where 

 (21)

the retarding force increases linearly with an increase in
the defect concentration. It is worth noting that, as the
velocity of dislocation glide increases, the slope of the
dependence decreases in inverse proportion to the
velocity in accordance with formula (12) (at n1 < n, we
have Fd > Bv; i.e., F ≈ Fd). At concentrations n > n2, the
retarding force of the dislocation motion is described
by expression (9); i.e., it is proportional to the cubic
root of the defect concentration. 

It should be noted that the dissipation mechanism
under investigation is independent of temperature. By
contrast, the damping constant depends substantially
on the temperature and is governed by different mech-
anisms in different temperature ranges. Let us make a
comparative analysis of the contributions from differ-
ent mechanisms of retardation to the damping constant
B with the use of the data taken from [1]. At a tempera-
ture T < Tel = 25 K, the dominant mechanism of energy
dissipation for a moving dislocation is the interaction
with conduction electrons: B ≈ Bel ≈ 10–6 Pa s. In the
temperature range Tel < T < TS ≈ 100 K, the magnon
mechanism of retardation becomes dominant (the cor-
responding damping constant is estimated as B ≈ BS ≈
10–5–10–6 Pa s in the aforementioned temperature
range). At a temperature TS < T < ΘC ~ 1000 K (where
ΘC is the Curie temperature), the retardation of disloca-
tions is determined primarily by the phonon mecha-
nism of energy dissipation (B ≈ Bf ≈ 10–4–10–5 Pa s). 

Now, we perform a numerical evaluation. For ε ≈
10–1 and n0 ≈ 10–4, we obtain the critical velocity v0 ≈
10–2c ≈ 30 m/s and v1 ≈ 80 m/s. As is known, the plastic
strain rate , the density of mobile dislocations ρd, and
the mean velocity of dislocation motion v are related by
the expression  = bρdv. For the density of mobile dis-
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Fig. 1. Dependences of the retarding force of dislocation
motion on the velocity of dislocation glide for different con-
centrations of point defects (n4 > n3 > n2 > n1 = 0). 
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Fig. 2. Dependences of the retarging force of dislocation
motion on the concentration of point defects for different
velocities of dislocation glide (v3 > v2 > v1). 
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locations ρd ≈ 1011 m–2, we find  ≥ 103 S–1. The coef-
ficient of retardation by point defects is estimated as
Bd ≈ 5 × 10–5 Pa s. In this case, two extrema can exist
when the damping constant B satisfies the condition
B ≤ 6 × 10–6 Pa s. These values of the damping constant
for the majority of crystals are observed at temperatures
T ≤ 25 K. For the concentration of point defects n0 ≈
10−3, we obtain the following parameters: v0 ≈ 60 m/s,
v1 ≈ 160 m/s, Bd ≈ 10–4 Pa s, and B ≤ 10–5 Pa s. This con-
dition for the damping constant B is satisfied at temper-
atures T ≤ 100 K. Theoretically, two extrema at very high
concentrations of point defects n0 ≥ 10–2 can exist at
room temperature. However, at these concentrations of
point defects, we have the critical velocities v0 ≈ 10–1 c,
i.e., the velocities close to the maximum permissible
velocities in the framework of the model under consid-
eration. This circumstance decreases the reliability of
the estimates obtained for room temperature. 

Therefore, owing to the collective interaction of
point defects with a dislocation, the dependence F(v)
can exhibit two extrema in the case of motion of a sin-
gle dislocation. However, it should be noted that, for the
glide of a pair of dislocations, the defects can also enter
into a collective interaction with each dislocation. A
question now arises regarding the conditions under
which the dominant effect on the dislocation spectrum
(and, hence, on the retardation) is exerted by the inter-
action of dislocations with each other or by the collec-
tive interaction of point defects with each dislocation.
The answer can be found from a comparison of the gaps
determined by each of the above interactions. Under the
condition ∆dis > ∆def, i.e., 

 (22)

where L is the dislocation length and D is a quantity of
the order of the crystal size, the interaction of the dislo-
cations with each other makes a dominant contribution.
It is this case that was analyzed in my earlier work [7].
Inequality (22) can be approximately rewritten in the
form 

 (23)

For a defect concentration n0 ≈ 10–4, we obtain a1 ≈
102b. Otherwise (a > a1), the interaction between the
dislocations appears to be insignificant. Consequently,
the results obtained in this study hold not only for the

glide of a single dislocation but also for the motion of
two dislocations separated by a distance greater than a1. 

Since the force of retardation of the dislocation
motion in the velocity range v0 < v < v1 is inversely
proportional to the velocity of dislocation glide, the
extrema bounding this range are actually the boundary
values determining the range of dynamic instability for
the dislocation motion. The specific features of the dis-
location behavior in this range were investigated in
[3, 4]. 

4. CONCLUSIONS 

Thus, the numerical estimates obtained in this paper
demonstrate that the studied mechanism of dissipation
at high concentrations of point defects can have a pro-
found effect on the dislocation dynamics, especially at
low temperatures. 
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