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INTRODUCTION

Studying mechanisms of interaction of hydrogen
atoms with structural imperfections of the crystal lat-
tice is an important problem of the theory of metals
whose solution is essential to the understanding of the
nature of the hydrogen effect on the properties of met-
als and alloys [1–4]. Numerous investigations give con-
clusive evidence of the existence of a close association
of hydrogen embrittlement of metals with defects of the
crystal lattice. The presence of hydrogen in metals may
lead to both negative (for example, hydrogen “poison-
ing” of metals [5]) and positive (plasticizing of metals
[6, 7]) consequences. In this connection, a problem of
the effect of hydrogen atoms on the mobility of disloca-
tions, whose motion brings about plastic deformation
of crystals, is of very high priority.

The specific features of the behavior of hydrogen in
metals are determined by its high solubility and great
mobility [3]. Hydrogen atoms form atmospheres
around dislocations, thereby producing additional drag
upon dislocation slip. This dissipation mechanism was
studied in detail in [8–10]. The mechanisms of drag for
fast and slow dislocations are known to differ funda-
mentally [11]. The dislocation motion in crystals
involves motion through various barriers related to lat-
tice defects. The slowly moving dislocations overcome
barriers due to thermal fluctuations. As the velocity of
dislocations increases, their kinetic energy reaches the
height of the energy barriers and the possibility of
dynamic overcoming of the barriers arises. The range
of dynamic drag of dislocations usually begins at veloc-
ities 

 

v
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10

 

–2

 

c

 

, where 

 

c

 

 is the velocity of propagation of
transverse acoustic waves. In this case, as follows from
[8–10], dislocations break away from their atmo-
spheres. Since the velocity of dynamic slip of disloca-
tions markedly exceeds the velocity of motion of
hydrogen atoms, the latter atoms can be considered as

immobile. Another feature of hydrogen—its high solu-
bility in metals (especially, in Pd, Ta, Nb, and V)—is,
on the contrary, very significant, since makes it possible
to ensure the dominant influence of hydrogen atoms on
the velocity of dislocation slip and, hence, on the rate of
plastic deformation in the dynamic range.

The purpose of this work is to study dynamic drag
for dislocations by hydrogen atoms. The mechanism of
the energy dissipation in this case includes an irrevers-
ible conversion of the kinetic energy of a moving dislo-
cation into the energy of dislocation vibrations excited
by the elastic interaction of the dislocation with hydro-
gen atoms. Earlier, this mechanism of dislocation drag
has not been investigated in hydrogenated metals.

RESULTS AND DISCUSSION

Consider an edge dislocation that moves under the
action of a constant external stress 

 

σ

 

0

 

 in a metal con-
taining hydrogen atoms. Let the 

 

OZ

 

 axis be parallel to
the dislocation line and its Burgers vector be parallel to
the 

 

OX

 

 axis in the positive direction of which the dislo-
cation slips with a constant velocity of 

 

v

 

. The disloca-
tion may execute small vibrations in the slip plane 

 

XOZ

 

.
Let us consider a hydrogen atom as a defect of the dila-
tation-center type. Indeed, in the case of transition met-
als, hydrogen atoms are predominantly located in tetra-
hedral positions [1]. The corresponding size of pores
for metals with a bcc lattice is 

 

r

 

1

 

 = 0.29

 

R

 

, where 

 

R

 

 is the
radius of the solvent atom. At 

 

R

 

 = 

 

1.56 

 

Å (tungsten),

 

r

 

1

 

 = 0.45 

 

Å, while the radius of a hydrogen atom is 

 

r

 

ç

 

 =
0.50 

 

Å. Consequently, upon arrangement of hydrogen
atom in such a metal, a change in the crystal volume 

 

δ

 

V

 

arises because of a misfit between the tetrapore size and
the radius of hydrogen atom, and an energy of elastic
interaction with a stress field of the edge dislocation
appears. The quantity 

 

δ

 

V

 

 can be expressed in terms of
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Abstract

 

—Dynamic drag force for edge and screw dislocations in metals, which is caused by their elastic inter-
action with hydrogen atoms, has been investigated. The drag force for an edge dislocation due to hydrogen
atoms is shown to be a nonmonotonic function of the velocity with a pronounced maximum. In the case of screw
dislocations, the drag force is considerably smaller in magnitude, has no maximum, and in the range of collec-
tive interaction is independent of the hydrogen concentration. Based on a comparison of different drag mecha-
nisms, the concentrations and temperatures at which the velocity of dislocation slip is determined by the elastic
interaction of the dislocation with hydrogen atoms have been determined.
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the partial volume of hydrogen atoms  (see [1]), i.e.,

 

δ

 

V

 

 = /

 

N

 

A

 

, where 

 

N

 

A

 

 is Avogadro’s number.

The dislocation position is determined by the func-
tion 

 

S

 

(

 

z
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t

 

) = 

 

v

 

t

 

 + 

 

w

 

(

 

z
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t

 

)

 

, where 

 

w

 

(

 

z

 

, 

 

t

 

)

 

 is the random
function whose average value over an ensemble of
defects and disposition of dislocation elements is equal
to zero.

The equation of dislocation motion has the follow-
ing form [12]:

 

(1)

 

Here, 

 

T

 

 is the coefficient of linear tension of the dislo-
cation; the order of magnitude of the coefficient 

 

γ

 

 is
determined by the expression 

 

γ

 

 

 

≈

 

 

 

B

 

0

 

/

 

m

 

, where 

 

B

 

0

 

 is the
coefficient of dynamic drag of the dislocation; and 

 

m

 

 is
the mass per unit length of the dislocation whose value
is determined by the expression

 

(2)

 

where 

 

ρ

 

 is the crystal density, 

 

L

 

 is the quantity on the
order of the dislocation length, 

 

b

 

 is its Burgers vector,
and 

 

r

 

0

 

 is the quantity on the order of atomic distances
(

 

r

 

0

 

 

 

≈

 

 

 

b

 

). The characteristic value of the mass of a unit
segment is on the order of 

 

10

 

–16

 

 kg/m. The mass of a
screw dislocation and that of an edge dislocation are on
the same order. As was shown in [13], the effect of the
constant 

 

B

 

0

 

 on the drag force generated by a field of
randomly distributed defects is small to the extent of
the smallness of the dimensionless parameter

 

α

 

 =

 

 

 

γλ

 

v

 

/

 

c

 

2

 

, where 

 

λ

 

 is the cutoff parameter (

 

λ

 

 

 

≈

 

 

 

b

 

).
Since 

 

B

 

 

 

≤

 

 10

 

–4 

 

kg m

 

–1

 

 s

 

–1

 

 on the order of magnitude
and the linear density of the dislocation mass is 

 

m

 

 

 

≈

 

10

 

–16

 

 

 

kg/m, we have 

 

γ

 

 

 

≤
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 s
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. For the typical values
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m, 

 

c

 

 

 

≈

 

 3 

 

×

 

 10

 

3

 

 m/s, and 
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≤
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s, we
obtain that 

 

α � 1. For this reason, when calculating the
force of dislocation drag by defects, we neglect the
effect of the coefficient B0 and leave in Eq. (1) the van-
ishingly small coefficient γ only to ensure the conver-
gence of integrals appearing in the calculations.

The term σxy on the right-hand side of Eq. (1) is the
component of the stress tensor generated by hydrogen
atoms at the dislocation line, i.e., σxy = ,
where σxy, i is the component of the stress tensor pro-
duced by an ith defect and N is the number of hydrogen
atoms in the metal. Considering hydrogen atom as a
defect of the dilatation-center type, the stress tensor
produced by this defect can be written as

(3)
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m
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where µ is the shear modulus and ε is the misfit param-
eter of hydrogen atom.

In the second-order perturbation theory, the drag
force of an edge dislocation can be determined by the
formula (see [12])

(4)

where G is the Green’s tensor of Eq. (1) and the symbol
〈…〉 denotes the averaging over an ensemble of ran-
domly distributed hydrogen atoms and over the disloca-
tion length

(5)

After required calculations, we obtain the expres-
sion for the drag force of the dislocation in the form

(6)

where integration is performed over the entire momen-
tum space, n is the concentration of hydrogen atoms,

δ( v2 – ω2(pz)) is the Dirac delta function, and ω(pz) =

 is the dispersion relation for dislocation
vibrations. The expression for the activation ∆ we can
obtain solving the following equation

(7)

Depending on the velocity of dislocation slip, the
dynamic interaction of defects with a dislocation may
be both of collective character and of the character of
independent collisions [12]. Let us denote the time of
interaction of the dislocation with a hydrogen atom as
tç ≈ (rç/v) and the time of propagation of a perturbation
along the dislocation for a distance on the order of the
average distance between defects as td ≈ (l/c), where l ≈

. In the range of independent collisions (v > v0 =
rç∆), an inequality tç < td is fulfilled, i.e., within the
time of interaction with hydrogen atom the dislocation
element experiences no influence of other hydrogen
atoms. In this range, Eq. (7) has no solution, i.e., no
activation component arises in the dispersion relation.
In the range of collective interaction (v < v0), the
inverse inequality, tç > td, is fulfilled, i.e., when the dis-
location element interacts with hydrogen atom, it has
time to “feel” the influence of other hydrogen atoms
that have induced a perturbance of the dislocation con-
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figuration. In this range, the activation component
appearing in the dispersion relation is written as

(8)

Here, n0 is the dimensionless concentration of point

defects, n0 = . The force of drag for the dislocation
by hydrogen atoms has the form

(9)

Now, we investigate an asymptotic behavior of this
function. In the velocity range where v > v0, we obtain
Φ(x) ≈ x2. This is the range of independent collisions.
The drag force in this range is inversely proportional to
the velocity of the edge-dislocation slip

(10)

In the range of collective interaction (v < v0), we have
Φ(x) ≈ 1, and the drag of the dislocation by hydrogen
atoms acquires a quasi-viscous character, i.e., the drag
force in this case is a linear function of the velocity of
dislocation motion

(11)

Making use of data reported in [1], we now numerically
estimate the coefficient of the dynamic drag of an edge
dislocation that is caused by its interaction with hydro-
gen atoms. Thus, for iron µ = 8.3 × 1010 N/m2 and b =
2.48 × 10–10 m. At the concentration of hydrogen atoms
n = 1027 m–3, we obtain B = 8 × 10–5 kg/(m/s) and the crit-
ical-velocity value v0 ≈ 10–2c ≈ 30 m/s. In the case of
ultimately high concentrations (in palladium the ratio
of the number of hydrogen atoms to the number of
matrix atoms may reach unity), the constant B can be
greater by an order of magnitude.

Let us attempt now to answer the question whether
the interaction of hydrogen atoms with an edge disloca-
tion can make the main contribution to the drag coeffi-
cient, i.e., define the velocity of dislocation motion and,
hence, the rate of plastic deformation of the metal, and
under what conditions this may occur. To answer this
question, we will perform a comparative analysis of
contributions of different drag mechanisms to the
damping constant B resorting to results of [8]. At tem-
peratures T < Te = 25 K, the main channel of energy dis-
sipation by moving dislocation is the interaction with
conduction electrons Bel ≈ 10–6 kg/(m s). At Te < T <
Ts ≈ 100 K, the magnon mechanism of drag becomes
dominant (in this temperature range the damping con-
stant corresponding to it is Bs ≈ 10–5–10–6 kg/(m s). At
Ts < T < ΘC ~ 1000 K (ΘC is the Curie temperature), the

∆ed
c
b
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drag of dislocations is largely determined by phonon
scattering mechanisms: Bph ≈ ≈ 10–4–10–5 kg/(m/s).
The above estimates show that with due regard for the
interaction of hydrogen atoms with the dislocation the
total drag coefficient may change markedly, especially
at high hydrogen concentrations and low temperatures
(note that the dissipation mechanism considered is tem-
perature-independent). The contribution of this interac-
tion is significant even at room temperatures and may
become dominant at the temperatures T < Ts, at which
the phonon channels of dissipation cease to be effec-
tive.

Let us now consider the interaction of hydrogen
atoms with a moving screw dislocation, for which pur-
pose we make use of results of [14, 15]. The motion of
screw dislocations in a crystal is described by the equa-
tion analogous to Eq. (1) in which it is necessary to
replace the component σxy of the tensor of stresses pro-
duced by hydrogen atom in the metal by the component
σzy. Since this alters the symmetry of the problem, such
a replacement leads to a substantial change in the final
result. It is also necessary to perform an analogous
replacement in Eq. (7). Solving this equation, we obtain
the following expression for the activation component
in the spectrum of dislocation vibrations:

(12)

where Ls is the average distance between hydrogen
atoms in the slip plane. Thus, the spectral gap depends
on the concentration in different ways: in the case of
edge dislocations, the gap is proportional to the cube
root of the concentration of hydrogen atoms, i.e., is
determined by the average distance between hydrogen
atoms in the bulk of the crystal; in the case of screw dis-
locations, the gap is proportional to the square root of
the concentration, i.e., depends on the average distance
between hydrogen atoms in the plane of dislocation
slip; in the second case, the numerical value of the acti-
vation component for n = 1027 m–3 proves to be an order
of magnitude smaller than in the first case. For exam-
ple, for iron the activation values in the spectrum of the
edge dislocation is ∆ed = 1011 s–1 and in the spectrum of
the screw dislocation is ∆scr = 1010 s–1. The force of drag
of a screw dislocation by hydrogen atoms likewise is
much less than that of an edge dislocation. In the range
of independent collisions, we obtain for a screw dislo-
cation

(13)

the ratio of these forces is equal to

(14)
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In the range of collective interaction, the drag force act-
ing on a screw dislocation is determined by the expres-
sion

(15)

while the ratio of the drag forces proves to be even
smaller

(16)

In the range of collective interaction, as follows from
formula (15), the force of drag of a screw dislocation by
hydrogen atoms is independent of both their concentra-
tion and the misfit parameter.

The critical velocity v0 at which the character of
interaction of a screw dislocation with hydrogen atoms
changes is determined by the expression

(17)

For a screw dislocation in iron at the concentration of
hydrogen atoms n = 1027 m–3, the critical velocity is
v0 ≈ 10−3 s, i.e., an order of magnitude smaller than that
for an edge dislocation at the same hydrogen concentra-
tion.

Numerical estimates show that at n = 1027 m–3 the
damping constant caused by the interaction of a
screw dislocation with hydrogen atoms is equal to
Bscr ≈ 10–6 kg/(m/s), i.e., for this concentration the drag
mechanism under consideration can play an important
role only at T < Te.

Since the rate of plastic deformation is proportional
to the average velocity of dislocation slip, it may be
concluded that under certain conditions the elastic
interaction of hydrogen atoms with dislocations can
exert an appreciable and even dominant effect on the
rate of plastic deformation.
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