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The high hydrostatic pressure plasticizes crystalline
solids, influencing the elastic moduli of the crystal and
dislocation–dislocation interaction. Therefore, plastic
deformation in hydrostatically compressed crystals
exhibits a number of specific features [1–4].

The dislocation motion in crystals not subjected to
hydrostatic compression has been studied at length [5–
8]. In [6–8], it was shown that the observed quasi-vis-
cous character of the dynamic slowdown of disloca-
tions by point defects can be explained by considering
the dislocation vibration spectrum. In the works cited,
dissipation was related to the irreversible conversion of
the translational energy of a dislocation into the energy
of dislocation segment vibration about the “center of
mass” of the dislocation.

As was shown in [1–3], a crystal subjected to strong
hydrostatic compression exhibits nonlinear elastic
properties. In most practically feasible cases, however,
defect-induced strains are low compared to those
induced by uniform compressive pressure 

 

p

 

. In this
case, internal stresses in a hydrostatically compressed
crystal can be treated in terms of the conventional linear
theory of elasticity with renormalized elastic moduli. In
particular, dislocations and point defects are routinely
described with the geometrical parameters of defects
replaced by their values in hydrostatically compressed
crystals [3]. According to [2], a high hydrostatic pres-
sure does not produce a force acting on a dislocation.
However, it affects dislocation–dislocation interaction,
thus modifying the dislocation vibration dispersion law
and, hence, the drag force acting on a dislocation due to
impurities and other point defects. The dissipation
mechanism mentioned above has not been studied
under hydrostatic compression.

The purpose of this work is to theoretically analyze
the glide of a pair of edge dislocations moving over par-
allel glide planes in a hydrostatically compressed crys-
tal with allowance for their interaction both with each
other and with point defects.

Consider two infinite edge dislocations moving
under the action of constant applied stress 

 

σ

 

0

 

 in the field
of point defects randomly distributed over the volume
of a hydrostatically compressed crystal. The dislocation
lines are parallel to the 

 

z 

 

axis, and the Burgers vectors
of the dislocations are parallel to the 

 

x

 

 axis, in the pos-
itive direction of which they glide. It is assumed that the
dislocations move with constant velocity 

 

v

 

 in the same
plane that is normal to their glide planes. Such a config-
uration of edge dislocations is known to be equilibrium
and stable [1], allowing dislocations to form dislocation
walls. The distance between the glide planes is 

 

a.

 

 The
dislocations can weakly vibrate in their glide planes,
i.e., in the 

 

xz

 

 plane and in a plane parallel to it.

Let us write an equation of dislocation motion in the

 

xz

 

 plane.

The position of a dislocation is specified by function

 

X

 

(

 

z

 

, 

 

t

 

) = 

 

v

 

t

 

 + 

 

w

 

(

 

z

 

, 

 

t

 

), where 

 

w

 

(

 

z

 

, 

 

t

 

) is a random quantity
that, when averaged over the ensemble of defects and
the positions of dislocation segments, is equal to zero.

The dislocation motion is described by the equation
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Here,  is the component of the tensor of stresses

induced by defects on the dislocation line,  =

,  is the dislocation mass per unit length,

 is the speed of transverse acoustic waves in the crys-
tal (the tilde refers to the quantities for a hydrostatically
compressed crystal), 

 

N

 

 is the number of defects in the

crystal,  

 

≈

 

 

 

B

 

/

 

m 

 

is the damping coefficient, and 

 

B

 

 is the
damping taking into account primarily phonon dissipa-
tion. As was shown in [9], the effect of these dissipation
mechanisms on the drag force induced by the field of
randomly distributed defects is weak because of the

smallness of dimensionless parameter 

 

α

 

 = 

 

r

 

0

 

v

 

/

 

c

 

2

 

,
where 

 

r

 

0

 

 is the truncation parameter (

 

r

 

0

 

 

 

≈

 

 

 

b

 

). Since 

 

B

 

 

 

≤

 

10

 

–4

 

 Pa s and the dislocation linear density is 

 

m

 

 

 

≈

 

10

 

−

 

16

 

 kg/m,  

 

≤

 

 10

 

12

 

 s

 

–1

 

. For typical values of 

 

r

 

0

 

, 

 

c

 

, and

 

v

 

 (
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b
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 3 
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 m, 

 

c
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 3 

 

×

 

 10

 

3

 

 m/s, and 

 

v

 

 

 

≤
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 s),
we obtain 

 

α

 

 

 

�

 

 1. While made for crystals not subjected
to hydrostatic compression, this estimate is also valid in
our case, since hydrostatic pressure does not change the
orders of the related quantities. Therefore, to calculate
the drag force exerted by defects on dislocations, we
neglect the contributions of phonon and other dissipa-
tion mechanisms to damping constant 

 

B

 

. In addition,

damping coefficient  is assumed to be an infinitesimal
quantity that ensures convergence of emerging inte-
grals. Let 

 

F

 

dis

 

 be the force the second dislocation exerts
on the first one when they slip in the plane parallel to
the 

 

x

 

 axis,

(2)

where 

 

γ 

 

is Poisson’s ratio and 

 

µ 

 

is the shear modulus.
Here, we took into account that 

 

w

 

 

 

�

 

 

 

a 

 

and 

 

r

 

 

 

≈

 

 

 

a

 

.
It was shown [2] that, under hydrostatic compres-

sion, attraction between dislocations is enhanced
because of the appearance of an additional force that is
directly proportional to the hydrostatic pressure and is
inversely proportional to the dislocation spacing,

(3)

where
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Here, λ and µ are the Lamé coefficients and l, m, and n
are the Murnaghan coefficients. As was shown in [2],
the p dependences of K1 and K2, as well as the variation
of the Burgers vector, can be neglected in the range of
standard hydrostatic pressures. Following [6], we sup-
pose that point defects are dilatation centers with stress
fields smoothly cut at distances on the order of defect
radius R,

(6)

Applying the method developed in [6–8], we repre-
sent the point-defect-induced drag force in the form

(7)

where ω(qz) is the dispersion law of dislocation vibra-
tion. Using the standard Fourier transform and passing
into the coordinate system related to the center of mass
of the dislocation, we obtain the dispersion law in
explicit form,

(8)

where

(9)

Here, L is a quantity on the order of the dislocation
length and r0 is a quantity on the order of the atomic
spacing (r0 ≈ b).

It is known that, depending on the dislocation glide
velocity, the dynamic interaction of defects with a dis-
location may be either collective or discrete (i.e., pro-
ceed via independent collisions) [6–8]. To elucidate the
aforesaid, let us designate the time of interaction
between a dislocation and a point defect by tdef ≈ R/v
and the time a disturbance takes to travel a distance of
about the defect average spacing along the dislocation
by tdis ≈ l/c, where l is the defect average spacing. In the
range of independent collisions, where v > vd = R∆d =

, the inequality tdef < tdis holds true; that is,

a dislocation segment is not influenced by other defects
for the time of interaction with a given point defect. In
the range of collective interaction (v < vd), on the con-
trary, tdef > tdis; that is, a dislocation segment has time to
“sense” other defects that disturbed the dislocation
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shape. In [6–8], the motion of a single dislocation in the
field of point defects was studied in the absence of
hydrostatic pressure. The character of dislocation slow-
down was found to differ substantially at high (v > vd)
and low ((v < vd) velocities.

Consider two cases. The former, ∆(p) < ∆d, is not of
much interest, since this inequality means that the dis-
persion law and, hence, the critical velocity and drag
force are governed mainly by the collective interaction
of defects rather than by dislocation–dislocation inter-
action. Therefore, throughout the dynamic range, the
effect of hydrostatic pressure reduces to the renormal-
ization of the crystal’s elastic moduli. In the latter case,
∆(p) > ∆d, in contrast, dislocation–dislocation interac-
tion dominates. Performing the same calculations as in
[6–8], we find that, for a hydrostatically compressed
crystal, one can also distinguish two velocity subranges
but with another critical velocity separating these two
subranges (let it be vp) that now depends on the hydro-
static pressure,

(10)

At high velocities (v > vp), the point-defect-induced
drag force acting on the dislocation is inversely propor-
tional to the dislocation velocity and has the same form
as in a crystal not subjected to hydrostatic pressure
[6, 7]. However, the values of the quantities entering
into the resulting expression should be taken corre-
sponding to a hydrostatically compressed crystal. Thus,
in this velocity range, the pressure dependence of the
drag force shows up only in the renormalization of the
elastic moduli of the crystal even when dislocation–dis-
location interaction prevails,

(11)

The situation changes radically in the range of low
velocities (v < vp), where the dependence of the drag
force on the hydrostatic pressure appears in explicit
form, 

(12)
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πñ0b̃

2µ̃2ε̃2R
3m̃c̃v

-----------------------------.=

F
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When deriving this formula, we used the expression

(13)

for the dislocation mass [1], where  is the crystal den-
sity.

The effect of hydrostatic pressure on the relevant
quantities was estimated based on numerical calcula-
tions made in [2]: at a hydrostatic pressure of 109 Pa
applied to potassium iodide crystals, the amount of dis-
location–dislocation interaction rises by 65%. Accord-
ingly, critical velocity vp increases by 28% and the
point-defect-induced drag force acting on a dislocation
decreases by 40%.

Thus, in the range of low velocities, the effect of
hydrostatic pressure is higher than in the high velocity
range and an increase in the pressure results in a
decrease in the drag force due to the dissipation mech-
anism under study.

The results obtained may be useful in analyzing the
motion of dislocation walls in hydrostatically com-
pressed crystals.
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