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Motion of edge dislocation in the presence of prismatic loops and point defects is studied analytically. It

is shown that at certain conditions, the velocity dependence of the drag force has two maximums and

two minimums.
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1. Introduction

To a considerable extent, the plastic properties of crystals are
formed by motion of dislocation. The moving dislocations interact
with immobile dislocation loops and different point defects
randomly distributed in the bulk of crystal. The velocity of the
dislocations can be subdivided into two ranges: thermally
activated motion, where local barriers created by defects are
overcome by the dislocations due to thermal fluctuations, and the
dynamic region, where the kinetic energy of dislocation motion is
greater than the energy of interaction with local barriers. In this
region, the dislocation motion can be described by dynamic
equations. Though the dynamic range corresponds to the high
velocities, the dynamic mechanisms of dissipation may cause an
important impact on the fluctuation overcome of the barriers.
Moreover, for the soft metals (copper, zinc, aluminum, lead, etc.),
the region of high velocities begins at relatively low external
stresses.

The dislocation loops were intensively investigated in both
experimental [1,2] and theoretical studies [3–5]. The dynamic
drag of dislocations by point defects randomly distributed in the

bulk was studied in papers [6–9]. It has been shown that the
velocity dependence of the force of the drag is nonmonotonic
having both maximum and minimum.

In paper [10], an analytical expression for drag force by various
types of dislocation loops is obtained, and it is shown that this
force significantly depends on the orientation of the Burgers
vector of immobile dislocation loops with respect to the gliding
dislocation line. The crystal is supposed to contain no other defect
The FJ/F? ratio of the drag force for the parallel orientation of the
Burgers vectors of the loops with respect to the gliding dislocation
line (FJ) and the drag force for the perpendicular orientation (F?)
is determined by (FJ/F?) ¼ K(v/c)2, where v is the velocity of the
dislocation, c the velocity of acoustic waves in the crystal, and K

the dimensionless coefficient, whose value is of the order of the
ratio of the concentrations of dislocation loops with parallel and
perpendicular orientations of the Burgers vector. The spectrum of
dislocation vibrations is linear and velocity dependence of the
dislocation drag is monotonic function and does not have extrema
at all orientations of Burgers vector.

This paper deals with the investigation of the dynamic drag of
dislocations by prismatic dislocation loops and point defects
chaotically distributed in the bulk of crystal. Since in this case, the
spectrum of dislocation vibrations is nonlinear, the drag force
caused by the loops is a nonmonotonous function of the velocity,
and some region of the velocity where this force does not depend
on dislocation velocity exists. At certain conditions, the velocity
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dependence of the total drag force (by loops, point defects and
phonons) has two maximums and two minimums. The first
maximum corresponds to a maximal value of drag force from the
point defects and the second one corresponds to the maximum
caused by the loops. In this note, we obtain the conditions of
existence for two maximums and two minimums. This result is
not contained in recent paper [10] or papers of others authors.

2. Model and calculation

Let an infinite edge dislocation move under the influence of a
continuous external stress s0 in the positive direction of axis OX at
a constant velocity v (see Fig. 1). The dislocation line is parallel to
axis OY and the Burgers vector is parallel to axis OX. The
dislocation glide plane coincides with plane z ¼ 0. Planes of the
prismatic dislocation loops are parallel to the glide plane and their
centers are distributed randomly in the bulk of crystal.

Let us first consider a simple case: all the loops are prismatic
and have the Burgers vector b0 ¼ (0, 0, b0) (i.e. b ¼ 0) and radius a.
Dislocation position is defined by the function

Xðy; tÞ ¼ vt þwðy; tÞ ð1Þ

Here function w(y, t) describes random fluctuations of the
dislocation elements in the glide plane relative to the undisturbed
dislocation line. The equation of dislocation motion can be written
in the following form:

m
@X2

@t2
� c2 @

2X

@y2

( )
¼ b½s0 þ sd

xz þ s
L
xz� � B

@X

@t
ð2Þ

Here sxz
d and sxz

L are tensor components of the stresses created
on the dislocation line by point defects and dislocation loops,
respectively; b is the modulus of dislocation Burgers vector, m the
mass of dislocation unit length, B the damping constant
dependent on phonon, magnon, electron or other dissipation
mechanisms characterized by a linear dependence of dislocation
drag force on its velocity, c the propagation velocity of transverse
sound waves. It has been shown in paper [6], that the drag force
induced by a field of randomly distributed defects slightly

depends on the phonon mechanisms of dissipation because of
the smallness of the dimensionless parameter a ¼ Bbv/(mc2),
which is small in most cases.

The dynamic interaction of defects with the dislocation can be
of collective character and in the form of independent collisions
and it is determined by the dislocation velocity [7–9]. Let us
denote the time of dislocation interaction with impurity atom as
tdefER/v, where R is a value of the order of defect radius, REb. The
time of perturbation propagation along the dislocation for a
distance of the order of the average distance between defects ld is
denoted by tdisEld/c. In the region of independent collisions
v4vd ¼ RD the inequality tdefotdis is satisfied, so the dislocation
element for the time of interaction with the point defect is not
affected by other defects. In this region, point defects do not create
a gap in the dislocation spectrum. In the region of collective
interaction (vovd), we have tdef4tdis, i.e. during the time of
dislocation interaction with point defect, this dislocation element
has time to receive a signal from other defects. The collective
interaction of defects creates the spectrum gap [7]

D ¼
c

b
ðn0de2Þ

1=3
¼

c

l
; bðn0de2Þ

�1=3
¼ l � ld ð3Þ

here e is the dimensionless misfit parameter of surface defect,
characterizing its power, n0 the dimensionless concentration of
point defects, n0d ¼ ndR3. In this case vd is defined by the
expression

vd ¼ cðn0de2Þ
1=3
¼

c

l
�

c

ld
ð4Þ

The kinetic energy converts into the energy of dislocation
oscillations, therefore drag force depends on the form of
dislocation oscillation spectrum. According to Ref. [7], the drag
force of dislocation by point defects may be written as follows:

Fd ¼
Bdv

1þ ðv2=v2
dÞ
; Bd ¼

pn1=3
0 m2e2=3b4

3mc3R
�
mbðn0e2Þ

1=3

c
ð5Þ

Here m is the shear modulus. To simplify the formula, we use
the relation c2

¼ m/r and approximate dislocation mass by
mErb2, where r is the crystal density. Dependence of the drag
force by point defects on dislocation velocity is shown schema-
tically in Fig. 2. The values of v4vm1 ¼ vd

ffiffiffiffiffiffiffiffiffiffiffi
Bd=B

p
¼

2pe
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� gÞn0dmbc=3B

p
correspond to the region where the

phonon drag exceeds drag by defects. Here g is the Poisson

Fig. 1. Conceptual view of the edge dislocation moving in crystal containing

circular prismatic loops and point defects.

Fig. 2. The velocity dependence of the drag force by point defects for different

values of constant B (B44B34B24B1).
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coefficient. In the region vovm1, the drag by defects dominates,
and values vdovovm1 correspond to the region of independent
collisions, while for vovd we have the collective interaction
region.

Using the results of papers [9,10], we can present the
dislocation drag force by prismatic loops in the following
form:

FL ¼
nLb2

8p2m

Z
d3qjqxj � jsL

xzðqÞj
2dðq2

x v2 �o2ðqyÞÞ ð6Þ

where nL is the volume concentration of prismatic loops,
d(qx

2v2
�o2(qy)) the Dirac delta function, o(qy) the dislocation

oscillation spectrum

o2ðqyÞ ¼ c2q2
y þD2

ð7Þ

In contrast to paper [10], this spectrum contains the gap
caused by collective interaction of defects with dislocations.
This spectrum is the main reason for nonmonotonic
velocity dependence of the loop having an impact on the drag
force.

After simple algebra calculations we get drag force FL as
follows:

FL ¼
nLb2

4p2mcv

Z 1
�1

dqz �

Z 1
D=v

dqxqx
jsL

xzðqx;0; qzÞj
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2
x � ðD

2=v2Þ

q ð8Þ

To calculate the drag force by loops one can use the expression
for sxz

L(r) obtained in papers [3–5] and Fourier transform it.
Unfortunately it is impossible to calculate this integral in the
general case. Let us consider limiting cases. If aD5v, we get the
drag force as follows:

FL �
nLb2

4p2mcv

Z 1
�1

dqz �

Z 1
0

dqxjsL
xzðqx;0; qzÞj

2 �
nLmb2

0a2c

vð1� gÞ2
ð9Þ

To study the velocity region aDbv we replace the variables in
the integral px ¼ qxv/D, pz ¼ qzv/D. Then the essential value of
variable is pxb1, pzb1 and drag force may be written now
explicitly

FL �
nLmb2

0ac

ð1� gÞ2D
�

nLmbb2
0a

ð1� gÞ2ðn0de2Þ
1=3

ð10Þ

In this region the loop impact to the drag force does not
depend on dislocation velocity. In paper [10] this result cannot be
obtained due to linear vibration spectrum of the dislocation. For
the subsequent analysis it is convenient to represent the drag
force FL as the ratio of polynomials

FL ¼
lL

vL þ v
; lL ¼

nLmb2
0a2c

ð1� gÞ2
; vL ¼ aD ¼ c

a

b
ðn0de2Þ

1=3
� c

a

ld
ð11Þ

Since this relationship correctly describes the behavior of the
function FL(v), it is possible to analyze the qualitative features of
the dislocation motion without numerical methods.

The total drag force of the dislocation by point defects,
dislocation loops and phonons may be written as a sum of three
terms

F ¼
Bdv

1þ ðv2=v2
dÞ
þ

lL

vL þ v
þ Bv ð12Þ

To extract physical results from here let us consider
limiting cases. It is evident that vLbvd, since vL ¼ aD, vd ¼ bD

and abb.

(1) v5vd5vL.
In this case we can write the drag force as follows:

F ¼
lL

vL
þ ðBd þ BÞv ð13Þ

(2) vd5v5vL.
In this interval the drag force takes the form

F ¼
lL

vL
þ
ld

v
þ Bv; ld ¼ Bdv2

d ¼ mbcn0de2 ð14Þ

So the function F(v) decreases at vovm1 ¼
ffiffiffiffiffiffiffiffiffiffi
ld=B

p
¼ vd

ffiffiffiffiffiffiffiffiffiffiffi
Bd=B

p
,

increases at v4vm1 and has minimum at v ¼ vm1.
(3) vbvLbvd.

In this limit, the drag force is defined by the expression

F ¼
ld þ lL

v
þ Bv ð15Þ

The function F(v) decreases at vovm2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlL þ ldÞ=B

p
, increases

at v4vm2 and has minimum at v ¼ vm2. Since vm2bvLbvm1 we
have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlL þ ldÞ=B

p
b

ffiffiffiffiffiffiffiffiffiffi
ld=B

p
and lLbld.

3. Conclusions

Analysing the behaviour of F(v) we conclude that at some
conditions this function is essentially nonmonotonic and has two
maximums at v ¼ vd and v ¼ vL. Finally, the velocity dependence
of drag force has two minimums and two maximums if the
following conditions are satisfied

vm24vL4vm14vd ð16Þ

Substituting corresponding expressions in (16), we conclude
that in this case the damping constant B is restricted by
inequalities

Bd4B4Bdðb=aÞ2 ð17Þ

Dependence of the total drag force on dislocation velocity is
schematically shown in Fig. 3. Let us perform a numerical
evaluation. For eE10�1, aE10b and n0dE10�4 we obtain the

Fig. 3. The velocity dependence of the total drag force for different values of

constant B (B54B44B34B24B1).
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velocity vLE10�1cE300 m/s and vdE10�2cE30 m/s. For
mE5�1010 Pa and bE3�10�10 m the coefficient of drag by
point defects is estimated as BdE5�10�5 Pa s. The estimation
proves that the parameters belong to physically reasonable
interval. So the present results can be useful for the analysis of
the properties of real crystals containing point defects and
dislocation loops.

Now we can return to the arbitrary values of angles b and j. In
this case, the drag force is defined by the expression

F � FðvÞ ¼
Bdv

1þ ðv2=v2
dÞ
þ

lL

vL þ v

� ðcos2 bþ
1

3
sin2 b sin2 jÞ þ v2

c2
sin2 b cos2 j

� �
þ Bv ð18Þ

If j4(v/c) and bo(p/2), velocity dependence does not
essentially change. It is enough to substitute b0 by the combination

b0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 bþ 1

3sin2 bsin2 j
q

.

At jo(v/c) and bE(p/2) the dislocation drag force caused by
loops is essentially decreased. In this case two maximums and
two minimums of F(v) can appear as well. However, this is
possible only for the low temperature To25 K.
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