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FORMED SISTEMS 

 
The deformed systems with distributed parameters are often used in the 

equipments of different branch of industry. There are rod structures with distrib-
uted masses witch have loads from interaction with other objects as well as local-
ized masses that determined inertial loads. The examples of such systems with dis-
tributed / localized mass are shafts of rolling mills, transport pipelines of overland 
equipment and deep-water mining complexes, airlifting and pumping systems, bor-
ing flight of drilling rigs for oil and gas wells and of pit-shafts and special-purpose 
wells of big diameters, pipelines of drain and ventilating systems, pipelines of suc-
tion-tube dredge, and others. 

Dynamic processes of such systems are described by differential equation in 
partial derivative, the solutions are presented as eigenfunctions. The eigenfunctions 
are always orthogonal at the absence localized masses, but the eigenfunctions are 
weighted orthogonal for the systems with step-variable section. This fact essen-
tially complicates the solution of dynamic tasks.  

Transverse vibrations of homogeneous rods under difference boundary condi-
tions are specified in the monograph [1]. Similar problems about natural vibrations 
are discussed in [2] for double-step rod. Various tasks about dynamics of homoge-
neous rods with localized masses are described in [3]. 

Let’s examine the general task 
about transverse vibrations of the 
rod systems of step-variable hard-
ness with localized masses 

),...,2,1( рiM i =  (fig. 1) [4]. 
Transverse vibrations of such 

system section is examined sepa-
rately for each parts and then con-

jugation conditions are used for the system parts 
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where ),( txyi  - transverse displacement of rod sections i- part, 
i

ii
i m

JE
a =2 , iiJE , 

im  – bending harshness and linear mass of the parts correspondently. 
At first we study natural vibrations of such system without localized mass. 

Boundary conditions should be specified for the solution of the equation (1)  

Fig.1. Calculation scheme of rod system  
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The type of liner differential abstract function )4,...,1( =jL j  at the condition 

(2) corresponds to following way of rod system ends fixing: rigid fixing, pinning 
and free end. Moreover, it is necessary to specify the connection conditions at 

)1...,3,2,1( −== pilx i .  
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Let’s study the properties of the eigenfunctions, because it is necessarily for 
the solution of tasks on natural and forced vibrations. The eigenfunctions of the 
boundary problem are specified as 
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where )(xe  - unit function, )(, xX in  - the eigenfunctions of corresponding bound-

ary problem (1). 
Make use of well known formula [1] for each part 
 

 ( ) ( )
1

,,,,,,,,
2

,,
22

1 −
′′′−′′′+′′′−′′′=∫ω−ω

− i

i
inimiminimininimi

l

l
iminmn l

l
XXXXXXXXadxXX

i

i

,  (5) 

where nω - natural frequency of vibration. 

The integrals (5) are summed over whole system. This sum (5) are equal to 
zero for extreme parts of the system because of the boundary condition (2). Using 
the connection condition (3) we obtain   
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It is evident from (6) that the orthogonality of the eigenfunctions is possible 

only if linear masses is equal 1+= ii mm ; else they are orthogonal with weight  
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When let’s study the influence of local masses on the ortogonality of the ei-
genfunctions of concerned boundary problem. Presence of local mass iМ  at isx =  
leads to changing last equation of (3) to the following  

 
 ( ) ),(),0(),0( tsyMtsytsyJE iiiiii &&=−′′′−+′′′ . (8) 

The condition (8) is put though the eigenfunctions 
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If integral (5) is put as sum of two integral over interval [ ]0;1 −− ii sl  and 
[ ]ii ls ;0+ , we obtain the following equation from formulas (5) and (9) at the condi-
tion mn ωω ≠   
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The equation (10) signifies the ortogonality of the eigenfunctions with weight 
in this case on the segment [ ]ii ll ;1−  

 
 )()(,2 iiii sхМmx −δ+=ρ , (11) 

where )(хδ  - Dirak delta function. 

The ortogonality with weight of the eigenfunctions of given boundary prob-
lem is obtained combining the results (7) and (11) 
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The formula (12) for weight corresponds to general theory of the eigenfunc-
tions [5]. 

The squared norm of the eigenfunctions with weight is defined like 
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It is necessarily to introduce wave numbers 224
, / inin ak ω=  and turn to differen-

tiation over xkz in,=  for using well-known equation for calculation the squared 

norm of the eigenfunctions [1]. Then the connection conditions (3) for the eigen-
functions assume the form 
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where the differentiation is done over variable z. 

The case of rigid fixing of the rod system ends is examined below as an ex-
ample. We obtain the equation for the squared norm (14) taking into consideration 
the boundary conditions 
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The equation (15) assumes the following form taking into account connection 
conditions (14) and turning to differentiation over x 
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The squared norm of the eigenfunctions is defined similarly for other way of 
system end fixing. For example penultimate member in (16) should be replaced by  
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−  in the case of pinning and by )(
4

1 2
, llXm pnp  for the free 

end. 
It is easy to obtain from (16) well-known equation for the squared norm of the 

eigenfunctions with weight 1)( =xρ  [1] in the case of homogenous rod.  
In much the same way it is possible to examine corresponding tasks for longi-

tudinal vibrations of step-variable section rod system with localized masses. In this 
case the equation of longitudinal vibrations of i- part is given by 
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where ),( txu  - longitudinal displacement, iiii mFEa /2 = , iii mFE ,  - correspon-

dently longitudinal harshness and linear mass of the system.  

The equation for the eigenfunctions is obtained from conjugation conditions at 

ilx =  
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The characteristic of the eigenfunctions is the following in concerned case 
(Fig. 2) 
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It results from equation (18) and the conjugation conditions (17) that the ei-
genfunctions are also orthogonal with weight (12) taking into account localized 
masses. 

The squared norm of the eigenfunctions is calculated as 
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The equation (19) corresponds to fixing end of the rod system.  

Penultimate member in (19) should be replaced by )(
2

2
, lX

l
pn  in the case of 

free end. 
Taking into account that the mathematical model for torsional vibrations to-

tally coincides with the model for longitudinal vibrations the equations (18) and 
(19) are correct with substitution of hardness at tension (compression) on corre-
sponding hardness at torsion.  

It is necessary to define the eigenfunctions, use the conjugation conditions and 
the boundary conditions for examination of natural vibrations. Homogeneous sys-
tem of linear algebraic equation with p4  ( p2 ) unknowns is obtained as a result. 
The equation for determination of natural vibration frequency is defined if the de-
terminate of indicated system is equated to zero [2]. 

The Fourier method for the eigenfunctions with weight (12) could be used for 
examination of forced vibrations and application of the formula (19) simplifies this 
problem. 
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Obtained results could be used for rough calculation method of dynamic of 
variable section rod system if the form of this rod 
section is approximated as step figure. 

The task about longitudinal impact during dou-
ble-step drill column descending is examined in de-
tail as an example (fig/ 2)[6].  

The boundary and initial conditions (2) take the 
following forms in this case 

 
.0),0(;0),(),( 222 ==′+ tutluFEtluM &&    (20) 

     .)0,(;0)0,( oVxuxu −== &               (21) 

Here 1М - mass of cutter with weight; 2M  - tackle 
system mass; vo - descending velocity of column in 
coalface: inni ak /ω= .  

 The weight function and the eigenfunctions 
have the forms: 
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Here М1=0, as so as this mass is in coalface, (рис. 2). 

Given below formulas are followed from the boundary and conjugation condi-
tions (17) for two parts of the drill column 
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After simplification the determinate of the homogeneous system (23) is put to 
zero, then the equation for determination of the eigenfunctions and the natural fre-
quency of the drill column vibration are defined 

 
 ;0)cossin(cos)sincos(sin 2 =ηλα−ηλξλλ+ηλα+ηλαξλλ nnnnnnnn    (24) 
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Well-known special case of the homogeneous column [7] is fined from (24) 
under 1=α , ,02 =l   ll =1 . 

Fig. 2. Calculation scheme of 
drill column  
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Longitudinal impact occurs under slackening of block-and-tackle system 
(which don’t interact with column) for drilling rigs of rotary type or spindle drills 
and it is possible to put 0=ξ , therefore  

 
 0coscossinsin =ηλλ−ηλλα nnnn . (25) 

Well-known frequency equation [1] is defined from (25) for special case of 
homogeneous column )0,1( =η=α . 

The coefficients 2,1,1, ,, nnn BAB  are defined from the system (23). Taking into 

account that the eigenfunctions are defined accurate to constant, it is possible to 
put 11, =nB  and the following equation is defined from the system (23) 
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The eigenfunctions are obtained from the solution of the system (26) 
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and proper numbers nλ  are defined from the system of equations (25). 
Longitudinal displacements are produced as eigenfunctions expansion taking 

into account first initial condition (21) 
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Then we should satisfy second initial conditions (21). The following equation is 
defined by Fourier method with weight according to scheme 
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Fig. 3. The variation of maximum 
nondimensional stresses )1(

maxσ  at drill-
ing depth 200 m 

the squared norm of the eigenfunctions, which calculated by formula (19). 
Value of series coefficients (27) are calculated from (28) 
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So the stresses of the column are calculated from formula  
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Calculation stresses consist of two components: stresses from motion velocity 

variation )1(σ  - (29) and stresses from sudden application of column weight - 
)2(σ . Maximum value of second component of the stresses does not outnumber 

doubled value of static stresses [1] and calculation of them is not complicated pro-
cedure.  

The variation of maximum non-

dimensional stresses 
ovE

a

1

1max,1
1

σ
=σ  

from nondimensional time 
1

1

l

ta=τ  at 

0=x  and drilling depth 200 m is pre-
sented on Fig. 3.  

These stresses appear at the joint drill 
column and cutter. The parameters of the 
spindle drill column is used for the calcula-
tion. 

 It is evident from Fig. 3 that the be-
havior of the column stresses corresponds to 
impact processes nature. 

The variation of total maximum dy-
namic stresses max,2max,1max

σ+σσ =  at ve-Fig. 4. The distribution of the 
maximum stresses 
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locity of column descending smv /20 = and drilling depth 200 m is presented on 
Fig. 4. 

Thus stressed-deformed state of double-step drill column of drilling rig under 
impact loads could be totally examined using proposed dependences and permissi-
ble operative conditions could be determined.  
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