
THE PROBLEMS OF MODELING AND RENDERING OF THE

REALISTIC COMPLEX SCENES

Kovalov S., Korotin U.& Malcheva R. (DonSTU, Donetsk, Ukraine)

In this article, we discuss the problems of architecture’s organization of

the modelling and rendering graphics systems with the high-level parallelism

for the scenes of various complexity.

Interactive graphics is a field whose time has come. In the last few years

it has benefited from the steady and sometimes even spectacular reduction in the

hardware price/performance ratio, and now it is finally ready to fulfil its

promise to provide us with pictorial communication and man/machine

interaction.

Perhaps the most important new movement in graphics is the increasing

concern for modelling objects, not just for creating their pictures. Furthermore,

interest is growing in describing the time-varying geometry and behaviour of

3D objects. Thus graphics is increasingly concerned with simulation, animation,

and «back to physics» movement in both modelling and rendering in order to

create objects that look and behave as realistically as possible.

Displaying large database at high frame rates clearly requires dramatic

system performance, both in trams of computations and of memory of

bandwidth. We have seen that the geometry portion of a graphics system can

require more processing power than a single CPU can provide. Pipeline and

parallel processors are the basic building blocks of virtually all current high-

performance graphics systems.

Ray tracing is the modern and a powerful rendering method that can

generate extremely realistic images. Unfortunately, it requires a great deal of

computation: a typical image can require minutes or hours to compute on a

typical workstation. Fortunately, ray-tracing algorithms can be parallelized in

several ways [1]:

 Component parallelism. Computations for a single ray can be

parallelized. For example, reflection, refraction, and intersection

calculations all require computing the x, y, and z components of

vectors or points. These three components can be calculated in

parallel, resulting in a speedup by a factor of 3.

 Image parallelism. Ray-primitive intersections can be calculated in

separate pixels, since the calculations for each ray are independent. To

take advantage of this form of parallelism, however, pixels potentially

need access to the entire database, since the ray tree for a particular ray

may reach any portion of the database.

 Object parallelism. Primitives in the database can be distributed

spatially over multiply pixels. Each pixel, then, is responsible for all

rays that pass through its region. It computes ray-object intersections

if the ray hits an object, and forwards the ray to the next pixel

otherwise.

The first proposed object-parallel ray-tracing architectures used uniform

spatial subdivision to assign portions of the universe to pixels [2]. This resulted

in poor efficiency for many scenes, since most of primitives were clustered in a

few regions.

The image-parallel ray-tracing algorithm has been developed for

Thinking Machines’SIMD Connection Machine [3], in which the database is

repeatedly broadcast to all of the pixels, which perform ray-object intersections

in parallel. Implementations have been reported on shared-memory

multiprocessors, such as the BBN Butterfly [4]. Here, the database does not

need to be stored at each pixel or broadcast repeatedly; instead, pixels request

portions of the database from the memory system as needed. Unfortunately,

contention for shared memory resources increases with the number of pixels, so

only modest performance increases can be achieved in such systems.

Another level of parallelism is available in virtual-buffer systems that use

rectangular regions and complete bucket sorting. In such a system, each buffer

is initially assigned to a region. Parallel virtual-buffer systems do present two

difficulties. First, transferring buckets to multiple rasterization buffer in parallel

requires a high-performance data network between the front-end and

rasterization subsystems, as well as sophisticated control and synchronization

software [5]. Second, in some images, most of the primitives in the database can

fall into a single region, making the extra layer of parallelism useless. The

primitives in the overcrowded region could be allocated to more than one

rasterizer, but then the multiple partial images would have to be combined.

Although this complicates the rasterization process, it can be done by

compositing the multiple images into one buffer at the end of rasterization.

The notion of combining images after rasterization can be used to build a

second type of multilevel parallel architecture, image-composition or

composite architectures. The central idea is to distribute primitives over a

number of complete rendering system. The multiple renderers are synchronized

so they identical transformation matrices and compute the same frame at the

same time. Each renderer then computes its partial image independently and

stores that partial image in its own frame buffer. A tree of pipeline of

compositors combines the RGB and z-streams from each renderer using the

special technique and algorithms. Figure 1 shows a composite system for

displaying 4n triangles per frame built from four renderers, each of which can

display n triangles per frame.

Frame

buffer

 0

 Compo-

 sitor

Frame

buffer

 1

 Compo-

 sitor - ->RGB

Frame

buffer

 2

 Compo-

 sitor

Frame

buffer

 3

Fig.1. An image-composition system composed of 4 individual renderers

The main difficulties with this approach are the need to distribute the

database over multiple processors, which incurs all difficulties of parallel front

ends; aliasing or erroneous pixels caused by the image-composition operation;

and a lack of flexibility, since image composition restricts the class of

rastrezation algorithms that can be implemented on the machine. Nevertheless,

this approach provides an important way to realize system of extremely high

performance.

Bibliography: 1. Foley J., Dam A. Computer Graphics. Principles and

practice. - 2
nd

 ed. In C. - AWPC, 1997. - 1175p. 2. Cleary J., Wyvill G. «Design

and Analysis of a Parallel Ray Tracing Computer» // Proceedings of Graphics

Interface’83, May 1983, 33-34. 3. Delany H. «Ray Tracing on Connection

Machine» // Proceedings of the 1988 International Conference on

Supercomputing, July 4-8, 1988, 659-664. 4. Jenkins R. «New Approaches in

Parallel Computing» // Computers in Physics, 3(1), May 1989, 8-15. 5.

Ellsworth D. Pixel-Planes 5 Rendering Control. - 1998.

