ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» КАФЕДРА СТРОИТЕЛЬСТВА ЗДАНИЙ, ПОДЗЕМНЫХ СООРУЖЕНИЙ И ГЕОМЕХАНИКИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к практическим занятиям по дисциплинам «Сооружение горизонтальных и наклонных выработок» «Технология сооружения горных выработок» «Основы горного дела. Строительная геотехнология» «Геотехнология. Строительная»

Специальность: 21.05.04 «Горное дело»

РАССМОТРЕНО на заседании кафедры «Строительство зданий, подземных сооружений и геомеханика» Протокол № 12 от 26.04.2017 г.

УТВЕРЖДЕНО на заседании учебно- издательского совета ДОННТУ Протокол № 4 от 22.05.2017 г.

Донецк 2017

УДК 622.4

Методические указания к практическим занятиям по дисциплинам «Сооружение горизонтальных и наклонных выработок», «Технология сооружения горных выработок», «Основы горного дела. Строительная геотехнология», «Геотехнология. Строительная» / сост.: А.Н. Шкуматов, В.Ф. Формос. – Донецк: ДОННТУ, 2017. – 60 с.

Приведены темы, необходимый теоретический и иллюстративный материал для выполнения 9-ти практических занятий по дисциплинам «Сооружение горизонтальных и наклонных выработок», «Технология сооружения горных выработок», «Основы горного дела. Строительная геотехнология», «Геотехнология. Строительная».

Предназначены для студентов высших учебных заведений всех форм обучения специальности 21.05.04 «Горное дело» специализаций «Шахтное и подземное строительство», «Взрывное дело», «Подземная разработка пластовых месторождений», «Технологическая безопасность и горноспасательное дело», «Обогащение полезных ископаемых», «Горные машины и оборудование» и «Маркшейдерское дело».

Составители: А.Н. Шкуматов, доцент

В.Ф. Формос, доцент

Рецензенты: С.В. Борщевский, професор

О.К. Мороз, профессор

Отв. за выпуск: С.В. Борщевский, зав. каф., проф.

СОДЕРЖАНИЕ

	стр.
ВВЕДЕНИЕ	4
ПЗ №1: Классификация горных выработок и вычерчивание их поперечных сечений. Изучение выработок на чертежах и макетах, их назначение и взаиморасположение	5
ПЗ №2: Методика определения размеров поперечного сечения выработки в свету, вчерне и в проходке. Требования ПБ. Ознакомление с «Альбомом унифицированных типовых сечений».	7
ПЗ №3: Выбор параметров металлической арочной крепи. Расчет размеров поперечного сечения выработки вчерне и в проходке	. 10
ПЗ №4: Выбор технологической схемы проведения выработки. Ознакомлен с паспортом БВР. Изучение ПБ по теме	
ПЗ №5: Расчет проветривания тупикового забоя по нагнетательной схеме	26
ПЗ №6: Расчет сменной скорости проведения горной выработки проходческим комбайном	36
ПЗ №7: Расчет объемов работ по процессам, расчет нормы выработки. Расчет состава комплексной проходческой бригады	39
ПЗ №8: Построение графика организации работ	45
ПЗ №9*: Определение технико-экономических показателей проведения выработки	50
ПЗ №9**: Изучение технологии строительства выработок в трудных горно- геологических условиях	
ЛИТЕРАТУРА	59

ВВЕДЕНИЕ

Методические указания предназначены для студентов высших учебных обучающихся ПО специальности 21.05.04 «Горное заведений, специализаций «Шахтное и подземное строительство», «Взрывное дело», пластовых «Технологическая «Подземная разработка месторождений», безопасность горно-спасательное дело», «Обогащение полезных ископаемых», «Горные машины и оборудование», «Маркшейдерское дело» при практических занятий дисциплинам выполнении ПО «Сооружение горизонтальных и наклонных выработок», «Технология сооружения горных выработок», «Основы горного Строительная геотехнология», дела. «Геотехнология. Строительная».

Ниже приведена таблица распределения тем практических занятий по академическим часам.

No	Тема занятия	Объем,
Π/Π		час.
1	Классификация горных выработок и вычерчивание их поперечных сечений. Изучение выработок на чертежах и макетах, их назначение и взаиморасположение.	2
2	Методика определения размеров поперечного сечения выработки в свету, вчерне и в проходке. Требования ПБ. Ознакомление с «Альбомом унифицированных типовых сечений»	2
3	Выбор параметров металлической арочной крепи. Расчет размеров поперечного сечения выработки вчерне и в проходке.	2
4	Выбор технологической схемы проведения выработки. Ознакомление с паспортом БВР. Изучение ПБ по теме.	2
5	Изучение схем проветривания тупикового забоя. ПБ по теме.	2
6	Расчет сменной скорости проведения горной выработки проходческим комбайном.	2
7	Расчет объемов работ по процессам, расчет нормы выработки. Расчет состава комплексной проходческой бригады.	2
8	Построение графика организации работ.	2
9*	Определение технико-экономических показателей проведения выработки.	1
9**	Изучение технологии строительства выработок в трудных горно-геологических условиях.	1
Итого:		17

^{* -} для специализаций «Шахтное и подземное строительство», «Взрывное дело», «Подземная разработка пластовых месторождений» и «Технологическая безопасность и горно-спасательное дело»

^{** -} для специализаций «Обогащение полезных ископаемых», «Горные машины и оборудование» и «Маркшейдерское дело»

ПЗ №1: Классификация горных выработок и вычерчивание их поперечных сечений. Изучение выработок на чертежах и макетах, их назначение и взаиморасположение

Цель занятия — изучение элементов залегания пласта, назначения и пространственного расположения горных выработок с использованием макетов и чертежей.

Элементами залегания пласта являются: линия простирания, линия падения (восстания), угол падения.

Линия простирания — условная линия, полученная в результате пересечения пласта горизонтальной секущей плоскостью.

Линия падения (восстания) — линия, перпендикулярная линии простирания, лежащая в плоскости пласта.

Угол падения — угол между линией падения (восстания) и ее проекцией на горизонтальную плоскость.

Назначение горных выработок [1].

Горная выработка — полость в толще земных пород, созданная искусственным путем.

Квершлаг — горизонтальная подземная выработка, не имеющая непосредственного выхода на дневную поверхность, проведенная по породам вкрест простирания. Предназначена для вскрытия пласта, транспорта горной массы, вентиляции, передвижения людей, водоотлива, прокладки кабелей, труб и линий связи.

Штрек — горизонтальная подземная выработка, не имеющая непосредственного выхода на дневную поверхность, проведенная по простиранию пласта. Предназначена для транспорта горной массы, вентиляции, передвижения людей, водоотлива, прокладки кабелей, труб и линий связи. Штреки, проводимые по породе, называют *полевыми*.

Бремсберг - наклонная горная выработка, не имеющая непосредственного выхода на дневную поверхность, пройденная по восстанию (в направлении снизу вверх) и предназначенная для спуска горной массы сверху вниз при помощи механических транспортных средств, передвижения людей, транспортирования грузов, материалов, вентиляции и водоотлива.

Уклон – наклонная горная выработка, не имеющая непосредственного выхода на дневную поверхность, пройденная по падению (в направлении сверху вниз) и предназначенная для подъема горной массы снизу вверх, передвижения людей, транспортирования грузов, материалов, вентиляции и водоотлива.

Восстающий - вертикальная или наклонная горная выработка, не имеющая непосредственного выхода на поверхность и имеющая выход на один или оба этажных горизонта. Предназначен для доставки материалов и оборудования, перемещения людей, проветривания и спуска горной массы. Имеет одно, два или три отделения, в т.ч. лестничное.

Рудоспуск — вертикальная или наклонная горная выработка для перепуска горной массы под действием собственного веса. Применяется как на подземных, так и на открытых горных работах (на карьерах в горной местности).

Форму поперечного сечения выбирают в зависимости от физикомеханических свойств пересекаемых пород, возможного характера проявления и величины горного давления с учётом назначения и срока службы выработки, материала и типа крепи. Различают следующие формы сечений горных выработок (рис. 1.1): прямоугольная; сводчатая (а); трапециевидная; подковообразная (б); круглая (в).

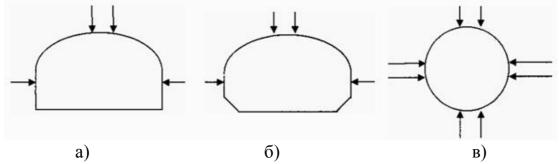


Рисунок 1.1 – Формы сечений горных выработок и направления воспринимаемого горного давления

Полезная площадь сечения зависит от её формы. В прямоугольных выработках вся площадь полезна и принимается за 100%.

Коэффициент излишка сечения (КИС) равен отношению площади $S_{\text{выр.}}$ сечения выработки с формой, отличной от прямоугольной, к площади сечения выработки прямоугольной формы $S_{\text{прям.}}$. Сравниваются сечения выработок для одних и тех же средств транспорта.

$$KUC = \frac{S_{\text{выр.}}}{S_{\text{прям.}}}. (1.1)$$

В выработках арочной формы КИС равен 1,15. В выработках круглой формы КИС равен 1,3.

Для закрепления теоретического материала студентам предлагается распознать приведенные на рис. 1.2 выработки и дать их определения. При этом во всех случаях угол падения пласта $\alpha = 10^{\circ}$.

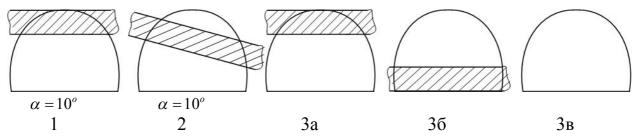


Рисунок 1.2 – Сечения горных выработок, проводимых смешанным забоем: 1 – уклон или бремсберг; 2 – штрек; 3 - квершлаг

ПЗ №2: Методика определения размеров поперечного сечения выработки в свету, вчерне и в проходке. Требования ПБ. Ознакомление с «Альбомом унифицированных типовых сечений»

Цель занятия — изучение методики определения размеров поперечных сечений выработок и требований ПБ по концентрации метана и допустимым скоростям движения воздушной струи.

<u>Методика определения размеров поперечного сечения выработки в свету,</u> <u>вчерне и в проходке</u>

Размеры выработки в свету устанавливают [2, 5] по ширине B_{mp} (формула 2.1) на высоте 1800 мм от почвы выработки (рис.2.1).

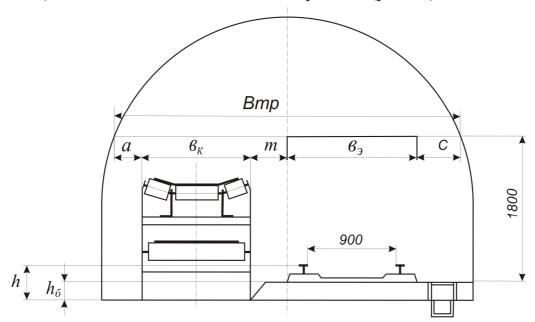


Рисунок 2.1 - Схема для определения B_{mp}

$$B_{mp} = a + b_{\kappa} + b_{\vartheta} + m + c, \text{ MM},$$
 (2.1)

где a — минимально допустимый зазор по ПБ между элементом крепи и конвейером, 400 мм;

 b_{κ} – габаритная ширина конвейера, мм;

 $b_{\text{-}}$ — ширина электровоза или вагонетки (принимается большее из значений), мм;

m — минимально допустимый зазор между конвейером и составом, 400 мм; c — минимально допустимая ширина для прохода людей, 700 мм.

По значению B_{mp} из альбома [7] выбирают сечение, у которого B_{mun} равно или является ближайшим большим к B_{mp} на высоте 1800 мм от почвы выработки. Для выбранного сечения там же приведено значение площади сечения выработки в свету после осадки, м² - $S_{cg}^{nocne\ oc.}$.

На газовых шахтах выбранное сечение проверяют по скорости движения воздушной струи по формуле:

$$V = \frac{k \cdot g \cdot A_{cym}}{864 \cdot S_{c6}^{nocne\ oc.} \cdot (d - d_0)}, \quad M/c,$$
(2.2)

где k - коэффициент неравномерности подачи воздуха, 1,45;

g - выделение метана в выработке, ${\rm M}^3/{\rm T}$;

 A_{cvm} - количество транспортируемого угля по выработке в сутки, т/сут;

d, d_0 — допустимая концентрация метана в исходящей и свежей струе воздуха; принимается в соответствии с [5].

Рассчитанная скорость должна находиться в интервале: $V_{min} \le V \le V_{\partial on}$ [5].

При выполнении этого условия из [7] выбираем для данного сечения S_{cs} (площадь сечения выработки в свету до осадки), высоту $h_{\delta an}$ и ширину $l_{\delta an}$ балласта, $S_{\kappa an}$ (площадь сечения водоотливной канавки). $S_{\phi y n \partial}$ определяется только для бетонной крепи.

Для определения площади сечения выработки вчерне S_{sq} необходимо выполнить расчет крепи. Тогда с учётом толщины крепи и затяжки, площади балластного слоя, водоотливной канавки и фундамента (для бетонной крепи):

$$S_{\theta q} = S_{c\theta} + S_{\kappa p} + S_{\delta a \pi} + S_{\kappa a \mu} + S_{\phi y \mu \partial}, M^{2}.$$

$$S_{\kappa p} = (T_{\kappa p} + 2 \cdot t_{3am \pi, w \kappa u}) \cdot P_{\kappa p}, M^{2}.$$

$$S_{\delta a \pi} = h_{\delta a \pi} \cdot l_{\delta a \pi}, M^{2}.$$

$$(2.3)$$

Площадь в проходке S_{nn} принимают согласно выражения 2.4.

$$S_{np} = (1,03 \div 1,12) S_{gq}, M^2. \tag{2.4}$$

В качестве примера выполнен расчет для следующих условий:

- наименование выработки магистральный конвейерный штрек;
- пересекаемые породы: кровля песчаный сланец, $f_{\kappa}=5$; почва песчаник, $f_{n}=7$; пласт угля $m_{y}=0.6$ м, $f_{y}=1.5$;
 - угол падения пород, $\alpha = 20^{\circ}$;
 - приток воды в забое: 1 м³/ч;
 - пропускная способность водоотливной канавки: 100 м³/ч;
 - эксплуатационное оборудование:
 - электровоз А14-2;
 - вагонетка ВГ-3,3;
 - ширина колеи 900 мм;
 - количество путей 1;
 - конвейер 3Л-100;
 - категория шахты по газу (метановыделение): 13 $\text{ M}^3/\text{T}$;
 - длина выработки: 1100 м;
 - глубина заложения выработки: 1000 м;
 - количество угля, транспортируемого по выработке в сутки: 1200 т/сут;
 - срок службы выработки: 5 лет.

$$B_{mp} = 400 + 1450 + 400 + 1360 + 700 = 4310 \text{ MM}.$$

Выбираем ближайшее большее сечение выработки с B_{mun} =4510 мм, для которого сечение в свету после осадки: 13,5 м².

Выбранное сечение проверяем по граничным в соответствии с [5] скоростям воздуха (V_{min} =0,7 м/с; V_{max} =4,0 м/с):

скоростям воздуха (V_{min}=0,7 м/c; V_{max}=4,0 м/c):
$$V = \frac{1200 \cdot 13 \cdot 1,45}{864 \cdot 13,5 \cdot (0,75-0,5)} = 7,76 > 4 \ \text{m/c}.$$

Т.к. $V > V_{max}$, то данное сечение не подходит, но даже если мы примем самое большое возможное сечение, то данное условие не будет выполняться.

Выходом из сложившейся ситуации послужит проведение параллельной выработки, что уменьшит в 2 раза грузопоток. Следовательно, по одной выработке будет транспортироваться 600 т/сут.

$$V = \frac{600 \cdot 13 \cdot 1,45}{864 \cdot 13,5 \cdot (0,75 - 0,5)} = 3,88 < 4 \text{ m/c}.$$

Т.к. V_{min} < V < V_{max} принимаем данное сечение (рис.2.2) выработки для дальнейших расчётов.

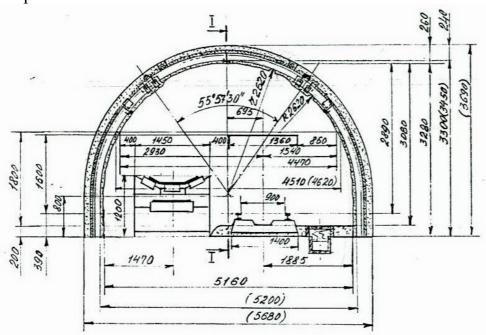


Рисунок 2.2 – Выбранное сечение выработки

Для этого сечения: $S_{cs}=14.4~\mathrm{m}^2$; $h_{\delta an}=0.2~\mathrm{m}$; $l_{\delta an}=2.7~\mathrm{m}$. $S_{\kappa an}=0.091~\mathrm{m}^2~\mathrm{c}$ учетом пропускной способности, равной $100~\mathrm{m}^3/\mathrm{u}$.

Рассчитываем площадь балласта: $S_{\delta an} = 0.2 \cdot 2.7 = 0.54 \text{ м}^2$.

$$S_{\text{RY}} = 14,4+0,54+S_{\text{KP}}+0,091, \text{ m}^2.$$

Расчет крепи выполнен в следующем практическом занятии.

ПЗ №3: Выбор параметров металлической арочной крепи. Расчет размеров поперечного сечения выработки вчерне и в проходке.

Цель занятия — изучение методики расчета смещений пород и определения нагрузок на крепь.

Методика определения смещения пород на контуре выработки

Смещения пород на контуре поперечного сечения выработки за весь период ее службы вне зоны влияния очистных работ определяется дифференцированно в кровле и боках в соответствии со СНиП II -94-80 по формуле (3.1).

$$U = K_{\alpha} \cdot K_{\Theta} \cdot K_{S} \cdot K_{B} \cdot K_{t} \cdot U_{T}, \tag{3.1}$$

где U_T определяется по графикам рис.3.1 в зависимости от величин R_p и H_p .

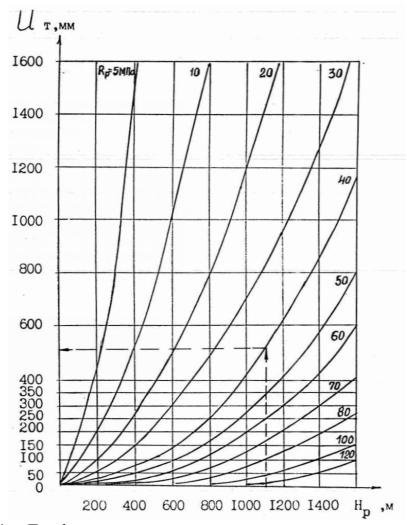


Рисунок 3.1 – Графики для определения типового смещения пород $U_{\scriptscriptstyle T}$

Значения R_p определяются с учетом всех пластов, содержащих выработку, мощностью не меньше 0,1 м, дизъюнктивных и других нарушений, ослабляющих их прочность. В расчетах принимается толщина пород, залегающих на расстоянии от контура сечения выработки в кровле -1,5 В, в почве и боках -1В.

Коэффициенты K_{α} , K_{Θ} принимаются по табл.3.1.

,				1 1	1		α					
Направление	Коэ	Коэффициенты K_{lpha}, K_{Θ} в зависимости от угла падения пород, $lpha$, град.										
проведения	до	20	21-	-30	31-	-40	41-	-50	51-	-60	боле	ee 70
выработки	K_{α}	K_{Θ}	K_{α}	K_{Θ}	K_{α}	K_{Θ}	K_{α}	K_{Θ}	K_{α}	K_{Θ}	K_{α}	K_{Θ}
По простиранию	1,00	0,35	0,95	0,55	0,80	0,80	0,65	1,20	0,60	1,70	0,60	2,35
Вкрест простирания	1,07	0,55	0,60	0,80	0,45	0,95	0,25	0,95	0,20	0,80	0,15	0,55
Под углом к	0,85	0,45	0,80	0,65	0,65	0,90	0,45	1,05	0,35	1,10	0,35	0,95

Таблица 3.1 – Значения коэффициентов K_{α} , K_{Θ}

При определении смещения пород в кровле или почве K_{Θ} =1.

Для кровли:
$$K_S = 0.2 \cdot (B - 1)$$
. (3.2)

Для боков:
$$K_S = 0.2 \cdot (H - 1)$$
. (3.3)

Значение коэффициента K_B для одиночных выработок равно 1; для сопряжений с односторонним примыканием — 1,4; для сложных двусторонних сопряжений — 1,6; для параллельных выработок — по формуле (3.4).

$$K_B = \frac{B_1 + B_2}{L} \cdot K_L,\tag{3.4}$$

где $B_1 + B_2$ - суммарная ширина взаимовлияющих выработок в проходке, м; L - расстояние между выработками, м.

Значения коэффициента K_L приведены в табл.3.2.

Таблица 3.2 - 3начения коэффициентов K_L

Расчетная глубина расположения выработки, H_p , м	Коэффициент K_L при расчетном сопротивлении пород на сжатие R_p , МПа							
		по прос		В	крест пр	остиран	ия	
	< 30	31-60	61-90	>120	< 30	31-60	61-90	>120
до 300	3,5/2	1,8/1,6	1,5/1,3	1,2/1	1,8	1,5	1,2	1,0
301-600	4/2,5	2/1,8	1,7/1,5	1,4/1,2	2,2	1,8	1,5	1,2
601-900	4,5/3	2,5/2,1	2/1,7	1,6/1,4	2,6	2,1	1,7	1,4
901-1200	5/3,5	3,5/3	2,5/2	1,8/1,6	3,0	2,5	2,0	1,5
больше 1200	5,5/4	4/3,5	3/2,3	2/1,8	3,4	2,9	2,4	1,7

Примечания. В числителе K_L для выработок с α до 35°, в знаменателе – свыше 35°. Для выработок, расположенных под углом к простиранию, K_L принимается как среднее значение. При промежуточных значениях прочности пород K_L определяется путем интерполяции. Для наклонных выработок K_L принимается как для горизонтальных, проводимых по простиранию.

Для выработок, срок службы которых более 15 лет, K_t = 1. При меньшем сроке службы K_t определяется по графикам, приведенным на рис.3.2-3.3.

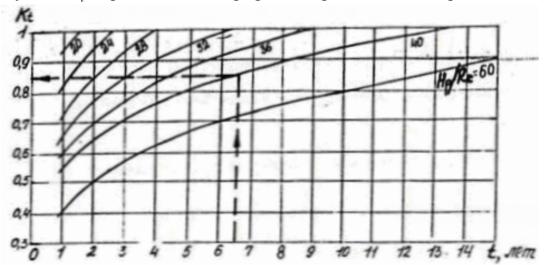


Рисунок 3.2 – График для определения коэффициента K_t при t от 1 года до 15 лет

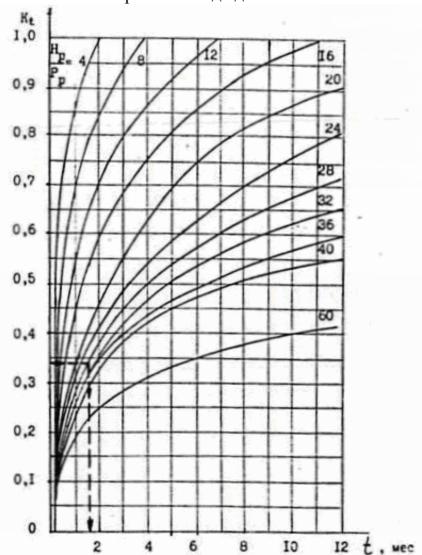


Рисунок 3.3 — График для определения коэффициента K_t при t менее 1 года

Методика определения расчетной нагрузки при рамных податливых крепях Расчётную нагрузку на рамные податливые крепи определяют по формуле:

$$P_{p} = K_{n} \cdot K_{n} \cdot K_{np} \cdot B \cdot P_{n}^{H}, \qquad (3.5)$$

где $P_n^{\scriptscriptstyle H}$ - нормативная нагрузка на металлическую арочную податливую крепь, кПа, принимается по графику рис.3.4;

 K_{n} - коэффициент перегрузки;

 K_{H} - коэффициент надежности;

 $K_{\it np}$ - коэффициент, учитывающий технологию проведения выработки;

В – ширина выработки в проходке, м.

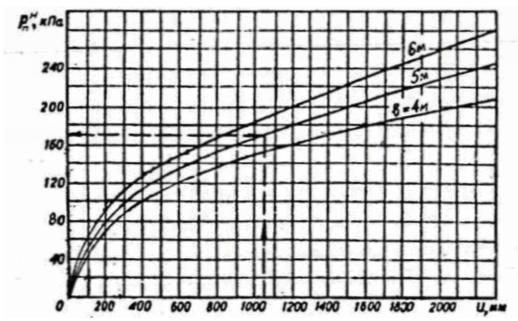


Рисунок 3.4 – График для определения нормативной нагрузки на податливую крепь

Значения коэффициента K_n приведены в табл.3.3.

Величина смещений, Коэффициент K_n для выработок U, MM магистральных и др. главных вскрывающих до 50 1,25 1,10 1,10 50-200 1,05 200-500 1,05 1,00 более 500 1.00 1.00

Таблица 3.3 - 3начения коэффициентов K_n

Коэффициент надежности $K_{_{\scriptscriptstyle H}}$ принимается для главных приствольных выработок равным 1,1; для остальных — 1,0.

Коэффициент K_{np} при буровзрывной технологии проведения принимается равным 1,0; при комбайновой — по табл.3.4.

Таблица 3.4 — Значения коэффициентов K_{np}

Отношение H_p/R_p	до 16	16-20	20-25	более 25
Коэффициент	0,6	0,8	1,0	1,1

Полученная нагрузка действует на арку при расстоянии между ними, равном 1 м. Из табл.3.5 выбираем соответствующую арку.

Таблица 3.5 – Рабочее сопротивление металлических арок крепи КМП-А3

Сечение	Типоразмер спецпрофиля и	Несущая	способность крепі	ти, кН/арку	
арки, м ²	сорт стали для его изготовления	в податливом р замкам	в жестком режиме работ		
		3СД	ЗПК		
7,6	СВП 17 Ст.5 пс 1-1 чи Ст.5 сп 1-1	180	200	297	
1000	-	-		-	
	СВП 19 Ст.5 пс 1-I чи Ст.5 сп 1-I	200	230	330	
8,8	СВП 17 Ст. 20Г2АФ пс	200	230	400	
10,8	СВП 22 Ст.5 пс 1-I чи Ст.5 сп 1-I	220	260	333	
10,8	СВП 19 Ст. 20Г2АФ пс	220	260	410	
	СВП 27 Ст.5 пс 1-1 чи Ст.5 сп 1-1	250	290	406	
13,3	СВП 22 Ст. 20Г2АФ пс	250	290	440	
15,0	СВП 33 Ст.5 пс 1-I чи Ст.5 сп 1-I	310	320	505	
	СВП 27 Ст. 20Г2АФ пс	310	320	550	
	СВП 33 Ст.5 пс 1-1 чи Ст.5 сп 1-1	310	320	485	
17,8	СВП 27 Ст. 20Г2АФ пс	310	320	530	

Таблица 3.6 – Параметры арок крепи КМП-А3

Параметр крепи				Значение		
Площадь сечения арки, м ²	7,6	8,8	10,8	13,3	15,0	17,8
Тип СВП	17	19	22	27	33	33
Податливость арки, мм	150	150	150	200/150*	200/150*	200/150*

^{*} числитель – податливость арки при совмещенном тампонаже; знаменатель – податливость арки при последующем тампонаже

Если нагрузка превышает несущую способность арки, увеличивают плотность их установки, уменьшая шаг крепи. Перерасчет количества рам на метр, n, производят по формуле (3.6).

$$n = \frac{P_p}{N_s}, \quad pam/m, \tag{3.6}$$

где N_s – несущая способность крепи, кH/арку.

Определяем шаг крепи по формуле (3.7).

$$L_{\kappa p} = \frac{1}{n}, \quad M. \tag{3.7}$$

Пример

Выполнен в продолжение расчетов для условий, приведенных в ПЗ №2.

Определяем поправочные коэффициенты к типовому смещению пород: $K_s = 0.2 \cdot (5.68-1) = 0.936$.

$$K_B = \frac{B_1 + B_2}{L} \cdot K_L = \frac{5,68 + 5,68}{30} \cdot 3,5 = 1,325.$$

Определяем смещение пород:

$$U = 1,0 \cdot 0,35 \cdot 0,936 \cdot 1,325 \cdot 1,0 \cdot 275 = 120$$
 mm.

Определяем нормативную нагрузку:

 $P_n^{\scriptscriptstyle H}$ - нормативная нагрузка на крепь, определяется по графику, для смещений пород U=120 мм и равна 70 кПа.

Определяем расчётную нагрузку на рамные податливые крепи:

$$P_p = 1,05 \cdot 1,0 \cdot 1,0 \cdot 5,68 \cdot 70 = 417,48$$
кПа.

Для выбранного типового сечения принимается крепь из спецпрофиля СВП-19: несущая способность 220 кН/раму; конструктивная податливость 200 мм, что больше U=120 мм.

Поскольку несущая способность рамы крепи меньше ожидаемой нагрузки, корректируем плотность установки рам крепи.

$$n = \frac{P_p}{N_s} = \frac{417,48}{220} = 1,9 \text{ pam/m}.$$

Для этого значения шаг установки крепи равен:

$$L_{\kappa p} = \frac{1}{1.9} = 0.52 \,\mathrm{m}.$$

Т.к. шаг установки крепи зависит от длины межрамных стяжек (расстрелов), окончательно принимаем $L_{\kappa p}=0.5$ м.

Определяем площадь, занимаемую крепью и затяжкой внахлестку.

Поскольку в [7] приведен периметр выработки после осадки, рассчитываем поправочный коэффициент, равный отношению ширины выработки до осадки к ширине выработки после осадки (4,62/4,51) на высоте 1800 мм от уровня балластного слоя.

$$S_{\kappa\rho} = (0.102 + 2 \cdot 0.05) \cdot (4.62/4.51 \cdot 14.5 - 5.68) = 1.853 \text{ m}^2.$$

Добавляем это значение к рассчитанным в ПЗ №2.

$$S_{ey} = 14,4+0,54+1,853+0,091 = 16,88 \text{ m}^2.$$

Принимаем $S_{eq} = 16.9 \text{ м}^2$.

В соответствии со Строительными Нормами допустимые переборы породы при БВР в зависимости от коэффициента прочности породы по шкале проф. Протодьяконова М.М. приведены в табл.3.6.

Таблица 3.6 - Допустимые переборы породы при БВР

S ₆₄ , M ²	Допустимые переборы породы, %							
	f=1,0-1,5	f= 2-9	f= 10-20					
< 8	5	10	12					
8-15	4	8	10					
> 15	3	5	7					

Для рассматриваемых условий допустимый перебор породы равен 5%. Поэтому площадь сечения выработки в проходке определяется:

$$S_{np} = 1,05 \cdot 16,9 = 17,75 \text{ m}^2.$$

Для расчета паспорта БВР применяется значение площади сечения выработки вчерне S_{sq} = 16,9 м 2 .

Для расчета сменной скорости проведения выработки при комбайновой технологии применяется значение площади сечения выработки в проходке $S_{nn}=17,75~{\rm m}^2.$

ПЗ №4: Выбор технологической схемы проведения выработки. Ознакомление с паспортом БВР. Изучение ПБ по теме

Цель занятия — изучение принципов выбора технологии проведения выработки в зависимости от горно-геологических и горнотехнических условий, а также методики составления паспорта БВР.

Принципы выбора технологии проведения выработки

Технология проведения выработки зависит от [3]:

- прочности вмещающих пород;
- ожидаемых водопритоков при проведении;
- площади сечения выработки;
- угла наклона выработки;
- вид применяемой энергии.

<u>Методику составления паспорта БВР</u> рассмотрим на примере проведения магистрального откаточного штрека.

Условия проведения:

- пересекаемые породы:
 - кровля песчаник прочностью 80 МПа;
 - почва песчаник прочностью 70 МПа;
 - пласт угля $m_v=1,0$ м, прочность угля 15МПа;
- угол падения пласта 30°;
- метановыделение из пласта угля $11 \text{ m}^3/\text{т}$;
- средства транспорта на период эксплуатации выработки:
 - электровоз А14-2;
 - конвейер 3Л-100;
- длина выработки 540 м;
- глубина заложения 1020 м;
- площадь сечения выработки вчерне $S_{\text{вч}} = 18.7 \text{ м}^2$;
- срок службы 10 лет.

Выбор технологии и технологической схемы проведения

Учитывая оборудование, размещаемое в выработке на период эксплуатации, выработка проводится с двусторонней подрывкой (верхней – по породам прочностью 80 МПа, нижней - по породам прочностью 70 МПа). Поэтому принимаем буровзрывную технологию проведения.

Для бурения шпуров и погрузки горной массы используется буропогрузочная машина непрерывного действия ПНБ-3Д с навесным бурильным оборудованием НБ-1А. Машина применяется при проведении горизонтальных и наклонных горных выработок в шахтах опасных и неопасных по газу и пыли при прочности пород до 160 МПа.

Предусматривается раздельная выемка угля и породы, т.е. вначале производят взрывание по углю с его уборкой и креплением угольного забоя

деревянной временной (забойщицкой) крепью. Затем производят верхнюю и нижнюю породную подрывку.

Транспорт горной массы осуществляется при помощи ленточного телескопического конвейера 1ЛТ-80. Разделение грузопотоков породы и угля (загрузка вагонеток) производится на сопряжении. Это обеспечивает попутную добычу угля при проведении выработки.

Расчет паспортов БВР для угольного и породного забоев

Взрывание – раздельное: по углю и по породе.

Тип ВВ для угольного забоя - угленит 13П работоспособностью 180 см 3 , тип СИ – ЭДКЗ-ПКМ. Масса патрона – 0,2 кг. Длина заходки - 2,0 м.

Тип ВВ для породного забоя — аммонит Φ 5 работоспособностью 265 см³, тип СИ — ЭДКЗ-ПКМ. Масса патрона - 0,25 кг. Длина заходки — 2,0 м.

Для угольного забоя

Для определения площадей угольного и породных забоев используем схему, приведенную на рис.4.1.

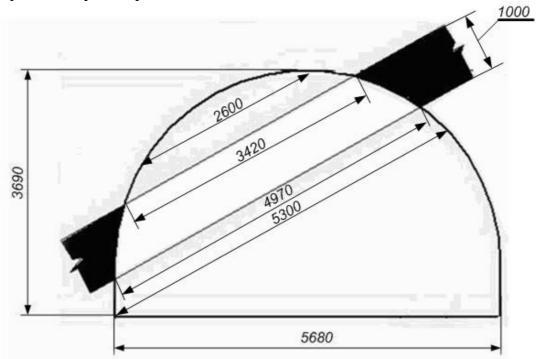


Рисунок 4.1 – Схема для определения площадей угольного и породных забоев

Коэффициент использования шпура (η) - 0,85 (для одной открытой поверхности). Глубина шпуров определяется по формуле [3]:

$$l_{u.y2} = l_{sax}/\eta = 2.0 / 0.85 = 2.1 \text{ M}.$$

Площадь сечения угольного забоя (рассчитывается как площадь трапеции):

$$S_{\text{By,VT}} = 1.0 \cdot (3.42 + 4.97)/2 = 3.78 \text{ m}^2$$

где 1,0 – средняя мощность угольного пласта, м.

Для породного забоя:

Коэффициента использования шпура - 0,95 (для двух открытых поверхностей). Глубина шпуров [3]:

$$l_{u.n} = 2,0/0,95 = 2,05 \text{ M}.$$

Площадь сечения верхней подрывки (рассчитывается как площадь параболы):

$$S_{\text{BY.II.B}} = 2/3 \cdot (0.6 \cdot 3.42) = 1.3 \text{ m}^2$$

где 0,6 – максимальная мощность верхней подрывки, м.

Площадь сечения нижней подрывки (оставшаяся площадь):

$$S_{\text{вч.п.н}} = 18,7 - 3,78 - 1,3 = 13,62 \text{ m}^2.$$

Удельный расход ВВ

Для угольного забоя:

Удельный расход ВВ определяют как среднее из значений, определенных по формулам проф. М.М. Протодьяконова и Н.М. Покровского [3]. По формуле проф. М.М. Протодьяконова:

$$q = 0.4 \cdot \left(\sqrt{0.2 \cdot f} + \frac{1}{\sqrt{S_{gq}}} \right)^2 \cdot k \cdot e^{-1}, \text{ KeV/m}^3,$$

где f- коэффициент крепости породы по шкале М.М. Протодьяконова;

 B_n — ширина породной подрывки, м;

k - коэффициент увеличения расхода ВВ при машинной погрузке для лучшего дробления породы, 1,3;

e - коэффициент работоспособности ВВ, $e = P_x/P_{\text{эm}}$,

 P_x - работоспособность принятого ВВ, 180 см³;

 $P_{\text{эт}}$ - работоспособность эталонного BB, 525 см³.

$$e^{-1} = 525/180 = 2,92;$$

$$q = 0,4 \cdot \left(\sqrt{0,2 \cdot 1,5} + \frac{1}{\sqrt{3,78}}\right)^2 \cdot 1,3 \cdot 2,92 = 1,71 \text{ кг/м}^3.$$

По универсальной формуле проф. Н.М. Покровского [3]:

$$q = q_1 \cdot s_1 \cdot V_1 \cdot e_1, \text{ KF/M}^3,$$

где q_1 – удельный расход BB при нормальном заряде выброса, q_1 = 0,1:f;

 s_1 — коэффициент, учитывающий текстуру взрываемой породы, для пород с мелкой трещиноватостью равен 1,4;

 V_1 — коэффициент, учитывающий зажим породы — при одной открытой поверхности принимают:

$$V_1 = 3 \cdot l_{u} / \sqrt{S_{eq}}$$
;

 e_1 – обратный коэффициент работоспособности BB, $e_1 = P_{\text{эт}}/P_{\text{x}}$.

$$q_1 = 0,1 \cdot 1,5 = 0,15 \text{ кг/м}^3;$$
 $V_1 = 3 \cdot 2,1/\sqrt{3,78} = 3,24;$
 $e_1 = 380/180 = 2,11;$
 $q = 0,15 \cdot 1,4 \cdot 3,24 \cdot 2,11 = 1,44 \text{ кг/м}^3.$

Принимаем среднее значение, равное 1,58 кг/м³.

Для породного забоя:

Нижняя подрывка. По формуле проф. М.М. Протодьяконова:

$$q = 0.15 \cdot \sqrt{f \cdot \left(\sqrt{0.2 \cdot f} + \frac{1}{B}\right)} \cdot k \cdot e^{-1}, \ \kappa e/M^3,$$

где B — ширина породного забоя по средней линии, параллельной открытой поверхности, 5,3 м.

$$e^{-1} = 525/265 = 1,98;$$

$$q = 0.15 \cdot \sqrt{7 \cdot \left(\sqrt{0.2 \cdot 7} + \frac{1}{5.3}\right)} \cdot 1.3 \cdot 1.98 = 1.40 \ \text{ke/m}^3.$$

По формуле проф. Н.М. Покровского:

$$e_1 = 380/265 = 1,43;$$

 $q = 0,7 \cdot 1,4 \cdot 1,6 \cdot 1,43 = 2,24 \text{ kg/m}^3;$

где V_1 - коэффициент, учитывающий зажим породы, для пород почвы — 1,6.

Принимаем среднее значение q, равное 1,82 кг/м³.

Верхняя подрывка: По формуле проф. М.М. Протодьяконова:

$$q = 0.15 \cdot \sqrt{8} \cdot \left(\sqrt{0.2 \cdot 8} + \frac{1}{2.6} \right) \cdot 1.3 \cdot 1.98 = 1.88 \ \kappa e/m^3.$$

По формуле Н.М. Покровского: $q=0,8\cdot 1,4\cdot 1,2\cdot 1,43=1,92$ кг/м³, где V_1 - коэффициент, учитывающий зажим породы, для пород кровли -1,2.

Принимаем q равным 1,90 кг/м³.

Расчетный расход ВВ на заходку (Q_{pac^u}) определяется по формуле $Q_{\textit{зах.}} = q \cdot V_{\textit{зах.}}$ кг, где q - удельный расход ВВ, кг/м 3 .

Определение объема взрываемой породы на заходку

Для угольного забоя:
$$V_{\text{зах}} = l_{\text{зах}} \cdot S_{\text{вч.уг}};$$
 $V_{\text{зах}} = 2.0 \cdot 3.78 = 7.56 \text{ m}^3;$

Для породного забоя:

верхняя подрывка:

 $\overline{V}_{3ax} = 2.0 \cdot 1.3 = 2.1 \text{ m}^3;$ $V_{3ax} = 2.0 \cdot 13.62 = 27.2 \text{ m}^3;$ нижняя подрывка:

Определение расчетного расхода ВВ на заходку Для угольного забоя:

 $Q_{334 \text{ V}} = q \cdot l_{334 \text{ V}} \cdot S_{84 \text{ V}} = 1.58 \cdot 2.0 \cdot 3.78 = 11.94 \text{ K} \Gamma$

Для породного забоя:

 $Q_{\text{3ax,\Pi,B}} = 1.90 \cdot 2.0 \cdot 1.3 = 4.94 \text{ KT};$ верхняя подрывка $Q_{338 \text{ H}} = 1.82 \cdot 2.0 \cdot 13.62 = 49.58 \text{ K}\text{ }$ нижняя подрывка

Определение количества шпуров на заходку

Для угольного забоя:

$$N_{y} = \frac{1,27 \cdot q_{yz} \cdot S_{gu,yz} \cdot \eta}{\Delta_{n} \cdot d_{n}^{2} \cdot k_{3an}} = \frac{1,27 \cdot 1,58 \cdot 3,78 \cdot 0,85}{1100 \cdot 0,036^{2} \cdot 0,46} = 9,83 \text{ um},$$

 Δ_{Π} – плотность патронирования для угленита 13 Π , 1100 кг/м³; где d_n - диаметр патрона угленита 13П, 0,036 м; k_{3an} – коэффициент заполнения шпура, 0,4-0,6.

Принимаем 10 шпуров.

Для породного забоя:

верхняя подрывка $N_{n.s.} = \frac{1,27 \cdot q_s \cdot S_{sq.n.} \cdot \eta}{\Delta_n \cdot d_n^2 \cdot k_{sqn}} = \frac{1,27 \cdot 1,90 \cdot 1,3 \cdot 0,95}{1100 \cdot 0,036^2 \cdot 0,45} = 4,6$ шт.

Принимаем 5 шпуров.

нижняя подрывка:
$$N = \frac{1,27 \cdot q_{_H} \cdot S_{_{6^{_{_{_{_{_{3}}}}}}} \cdot \eta}{\Delta_{_{_{_{_{1}}}}} \cdot d_{_{_{_{_{3}}}}}^2} = \frac{1,27 \cdot 1,82 \cdot 13,62 \cdot 0,95}{1100 \cdot 0,036^2 \cdot 0,45} = 46,6$$
 um .

Принимаем 47 шпуров.

Определение массы шпурового заряда

Для угольного забоя:

$$q_{\text{ш.у}} = Q_{\text{зах.y}} / N_{\text{y}} = 11,94 / 10 = 1,19$$
 кг.

Т.к. масса патрона угленита 13П составляет 0,2 кг, принимаем 6 патронов.

Для породного забоя:

 $q_{\text{III.II.B}} = 4,94 / 5 = 0,98$ кг; т.е. 4 патрона по 0,25 кг. верхняя подрывка

 $q_{\text{ш.п.н}} = 49,58 / 47 = 1,05$ кг; т.е. 4 патрона по 0,25 кг. нижняя подрывка:

Определение длины забойки

$$l_{3a\delta} = l_{\text{III}} - l_{3ap} = l_{uu} - l_n \cdot n_n$$
, $M.$

где l_{u} - длина шпура, м (для шпуров, перпендикулярных к плоскости забоя, равна глубине шпура; для остальных — глубина, деленная на синус угла наклона шпура к плоскости забоя);

 l_n - длина патрона, м (0,18 м для угленита 13П, 0,26 м для аммонита Ф5); n_n - количество патронов в шпуровом заряде.

<u>Для угольного забоя</u>: $l_{3a6.y} = 2,10 - 0,18 \cdot 6 = 1,02$ м.

<u>Для породного забоя</u>: $l_{3a6} = 2,05 - 0,26 \cdot 4 = 1,01$ м.

По [5] длина забойки должна быть не менее 0.5 м, следовательно, условие ПБ выполняется.

Конструкция забойки

В шахтах, опасных по газу и пыли, следует применять гидрозабойку в виде водонаполненных полиэтиленовых ампул с обратным клапаном или ингибиторная забойка в виде пастообразной массы, запатронированной в полиэтиленовые ампулы (ПЗМ-3) в сочетании с запирающей забойкой из водопроницаемых материалов (песка, граншлака, смеси глины с песком) длиной не менее 35 см.

Т.к. в выработке имеется выделение метана, принимается гидрозабойка в породном и угольном забоях в сочетании с запирающей забойкой из глины длиной 66 см и 67 см, соответственно.

Составление схемы расположения шпуров

Определение площади поперечного сечения выработки, приходящейся 1 шпур.

<u>Для угольного забоя</u>: $S' = S_{\text{вч.уг}} / N_{\text{v}} = 3,78 / 10 = 0,38 \text{ м}^2.$

Для породного забоя:

верхняя подрывка: $S^{'}=1,3/5=0,26 \text{ m}^2;$ нижняя подрывка: $S^{'}=13,63/47=0,29 \text{ m}^2.$

Приняв полученную площадь за круг – *определим среднее расстояние* между шпурами:

для угольного забоя:

$$a = \sqrt{\frac{4 \cdot S}{\pi}} = \sqrt{\frac{4 \cdot 0.38}{3.14}} = 0.70 \text{ m},$$

что более минимального, равного 0,6 м [5]. Шпуры располагаем в 2 ряда в шахматном порядке (схема приведена на рис.4.2). Сведения о шпурах и зарядов приведены в табл.4.1.

для породного забоя:

верхняя подрывка:
$$a = \sqrt{\frac{4 \cdot 0.26}{3.14}} = 0.58$$
 м;

нижняя подрывка:
$$a = \sqrt{\frac{4 \cdot 0.29}{3.14}} = 0.61$$
 м;

что более 0,3 м при взрывании по породе для $f \ge 7$ [5].

Определяем количество шпуров по почве выработки

$$N_{\rm n} = l_1 / a + 1 = 5,68 / 0,61 + 1 = 10,3$$
 шпуров,

где l_1 – ширина выработки вчерне по почве, 5,680 м.

Принимаем 11 шпуров с учетом 1 шпура на канавку.

Остальные 36 шпуров располагают равномерно по площади сечения (оконтуривающие - по контуру выработки, остальные — рядами параллельно второй открытой поверхности). Расстояние между зарядом шпура и открытой поверхностью - не менее 0,3 м [5].

Схема расположения шпуров приведена на рис.4.3. Сведения о шпурах и зарядов приведены в табл.4.2.

Расхождение между расчетным и фактическим расходом BB Расхождение не должно превышать 5%.

<u>Для угольного забоя:</u>

$$\Delta Q_y = \frac{\sum Q_{\phi,y} - Q_{3ax,y}}{Q_{3ax,y}} \cdot 100\% = \frac{12,0 - 11,94}{11,94} \cdot 100\% = 0,5\%.$$

<u>Для породного забоя</u>:

Суммарное расчетное значение расхода ВВ для верхней и нижней подрывок равно:

$$Q_{3ax,n.} = Q_{3ax,n.6} + Q_{3ax,n.4} = 4,94 + 49,58 = 54,52 \text{ KG}.$$

$$\Delta Q_{n.6} = \frac{\sum Q_{\phi.n.} - Q_{3ax.n.}}{Q_{3ax.n}} \cdot 100\% = \frac{52,0 - 54,52}{54,52} \cdot 100\% = -4,6\%.$$

Отклонения не превышают допустимого расхождения. Окончательно масса шпуровых зарядов и количество шпуров устанавливаются после 3-х опытных взрываний в забое, что подтверждается соответствующими актами.

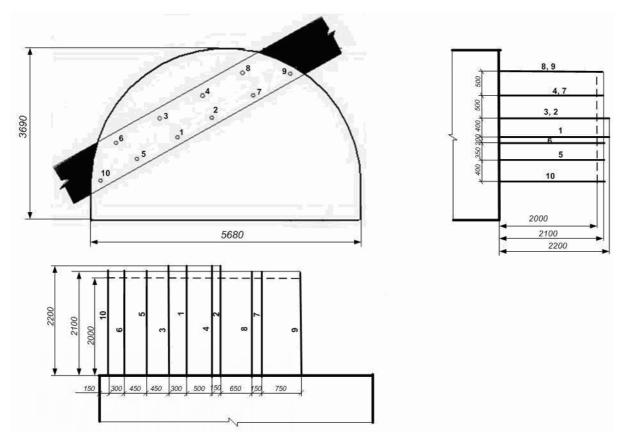


Рисунок 4.2 – Схема расположения шпуров в угольном забое

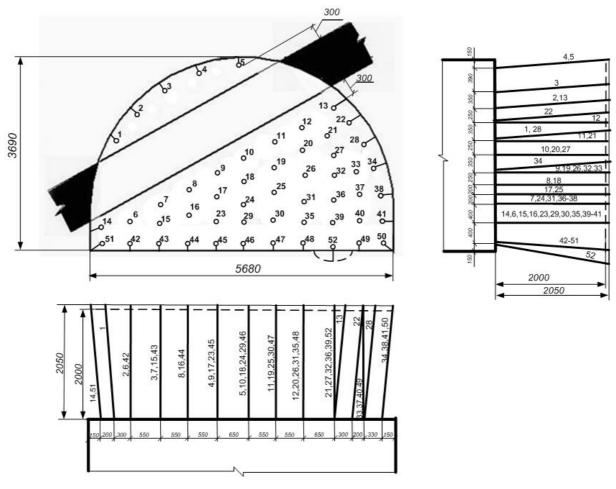


Рисунок 4.3 – Схема расположения шпуров в породном забое

Таблица 4.1 – Сведения о шпурах и зарядах в угольном забое

№ шпура	Длина	Угол накі	пона, град.	Величи	ина заряда, кг	Длина	Очередность
	шпура, м	к вертикали	к горизонтали	шпура	группы шпуров	забойки, м	взрывания
1	2,20	90	90	1,2	1,2	1,12	ЭДКЗ - ОП
2	2,20	90	90	1,2	1,2	1,12	ЭДКЗ - 1ПКМ
3, 4	2,20	90	90	1,2	2,4	1,12	ЭДКЗ - 2ПКМ
5 - 8	2,10	90	90	1,2	4,8	1,02	ЭДКЗ - ЗПКМ
9, 10	2,10	90	90	1,2	2,4	1,02	ЭДКЗ - 4ПКМ

 $\sum Q_{\dot{\Phi}} = 12,0$

Таблица 4.2 – Сведения о шпурах и зарядах в породном забое

Манияния Длина		Угол накі	пона, град.	Величи	ина заряда, кг	Длина	Очередность
№ шпура	шпура, м	к вертикали	к горизонтали	шпура	группы шпуров	забойки, м	взрывания
1-5	2,10	85	85	1,0	5,0	1,06	ЭДКЗ - 0П
6-12	2,05	90	90	1,0	7,0	1,01	ЭДКЗ - ОП
13, 14	2,10	85	85	1,0	2,0	1,06	ЭДКЗ - 1ПКМ
15 - 21	2,05	90	90	1,0	7,0	1,01	ЭДКЗ - 2ПКМ
22	2,10	85	85	1,0	1,0	1,01	ЭДКЗ - 2ПКМ
23 - 27	2,05	90	90	1,0	5,0	1,01	ЭДКЗ - ЗПКМ
28	2,10	85	85	1,0	1,0	1,06	ЭДКЗ - ЗПКМ
29 - 33	2,05	90	90	1,0	5,0	1,01	ЭДКЗ - 4ПКМ
34	2,10	85	85	1,0	1,0	1,06	ЭДКЗ - 4ПКМ
35 - 37	2,05	90	90	1,0	3,0	1,01	ЭДКЗ - 5ПКМ
38	2,10	85	85	1,0	1,0	1,06	ЭДКЗ - 5ПКМ
39 - 40	2,05	90	90	1,0	2,0	1,01	ЭДКЗ - 6ПКМ
41	2,10	85	85	1,0	1,0	1,06	ЭДКЗ - 6ПКМ
42 - 49	2,10	90	85	1,0	8,0	1,06	ЭДКЗ - 7ПКМ
50 - 51	2,10	85	85	1,0	2,0	1,06	ЭДКЗ - 8ПКМ
52	2,15	90	85	1,0	1,0	1,11	ЭДКЗ - 8ПКМ

 $\sum \mathcal{Q}_{\tilde{\phi}} = 52,0$

ПЗ №5: Расчет проветривания тупикового забоя по нагнетательной схеме

Цель занятия — изучение методики расчета проветривания тупикового забоя на газовой шахте по нагнетательной схеме при буровзрывной и комбайновой технологиях проведения выработок.

Расход воздуха для проветривания тупиковой выработки рассчитывается по следующим факторам:

- наибольшему числу людей работающих в забое;
- минимально допустимой в выработке скорости движения воздуха;
- минимальной скорости воздуха в призабойном пространстве выработки с учетом его температуры и влажности;
 - газам, образующимся при взрывных работах.

При комбайновой технологии проведения выработки расчет производится по трем первым факторам. При буровзрывной технологии — добавляется расчет по четвертому фактору.

По этим факторам расчет воздуха производится для призабойного пространства, а затем - для всей выработки.

Схема размещения оборудования для проветривания тупикового забоя выработки на газовой шахте при нагнетательной схеме приведена на рис.5.1.

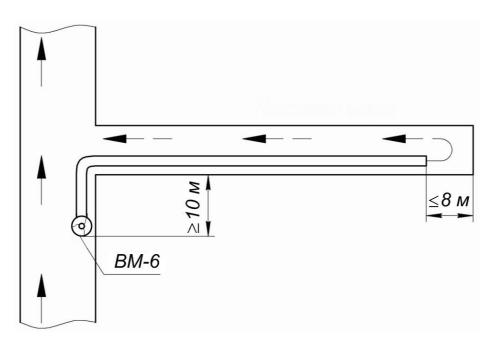


Рисунок 5.1 - Схема проветривания тупиковой выработки

Расход воздуха по наибольшему числу людей работающих в забое:

$$Q_{3a\delta}^{n} = 6 \cdot n, \, \text{M}^{3}/\text{MUH}, \tag{5.1}$$

где n — максимальное число рабочих в смену, чел; 6 м^3 /мин — расход воздуха на 1 человека.

Расчет по минимально допустимой скорости движения воздуха:

$$Q_{3a\delta}^{c} = 60 \cdot V_{\min} \cdot S_{cs}^{\partial o \ oc.}, \, M^{3}/MUH, \qquad (5.2)$$

где V_{min} — минимально допустимая скорость движения воздуха, м/с; $S_{cs}^{oo\ oc.}$ - площадь поперечного сечения выработки в свету до осадки, м 2 .

Расчет по минимальной скорости воздуха в призабойном пространстве выработки с учетом его температуры и влажности:

$$Q_{3a\delta}^{t} = 20 \cdot V_{3,\text{min}} \cdot S_{c\delta}^{\partial o \ oc.}, \text{ M}^{3}/\text{MUH}, \tag{5.3}$$

где $V_{3.min}$ — минимально допустимая скорость движения воздуха в призабойном пространстве выработки в зависимости от температуры и относительной влажности, м/с.

Значения скорости движения воздуха в призабойном пространстве выработки в зависимости от температуры и относительной влажности приведены в табл.5.1.

Таблица 5.1 - Значения скорости движения воздуха в призабойном пространстве выработки в зависимости от температуры и относительной влажности

Скорость воздуха, м/с	Допустимая температура t 0 С при относительной влажности воздуха φ , $\%$							
	75 и менее	76 - 90	Свыше 90					
до 0,25	24	23	22					
0,26-0,50	25	24	23					
0,51-1,00	26	25	24					
1,01 и более	26	26	25					

Расчет по газам, образующимся при взрывных работах:

$$Q_{3a\delta}^{BB} = \frac{2,25}{T} \cdot \sqrt[3]{\frac{V_{66} \cdot \left(S_{c6}^{\partial o \ oc.}\right)^{2} \cdot l_{n}^{2} \cdot K_{o\delta e}}{K^{2}_{ym.mp}}}, \text{ M}^{3}/\text{MUH},$$
 (5.3)

где T – максимальное время проветривания после взрыва, 30 мин;

 $V_{\it es}$ – объём вредных газов, образующихся после взрывания, л:

$$V_{gg} = 100 \cdot B_{vz} + 40 \cdot B_{nop}, \tag{5.4}$$

где B_{yz} и B_{nop} - масса одновременно взрываемых ВВ по углю и по породе, кг; при раздельном взрывании в расчетах используется наибольшее из двух слагаемых;

 l_n — длина тупиковой части выработки, на которой происходит разжижение ядовитых газов от ВВ до допускаемых по ПБ концентраций, м; при длине выработки свыше 500 м принимается равным 500 м;

 $K_{oбs}$ — коэффициент обводненности выработки, принимается по табл.5.2; $K_{ym.mp}$ - коэффициент утечки воздуха для трубопровода.

Таблица 5.2 - Значения коэффициента обводненности $K_{oбs}$

Характеристика выработок	$K_{o \delta e}$
Горизонтальные и наклонные тупиковые выработки, проводимые по сухим породам. Стволы сухие (приток до $1 \text{ м}^3/4$) любой глубины и обводненные глубиной	0,8
не более 200 м.	
Горизонтальные и наклонные тупиковые выработки, частично проводимые по водоносным породам (влажные выработки). Стволы обводненные (приток до $m^3/4$) глубиной более 200 м. Капеж.	0,6
Горизонтальные и наклонные тупиковые выработки, проводимые на всю длину по водоносным породам или с применением стационарных водяных завес (обводненные выработки). Стволы обводненные (приток от 6 до 15 м³/ч) глубиной более 200 м, капеж в виде дождя.	0,3
Стволы обводненные (приток более $15 \text{ м}^3/\text{ч}$) глубиной более 200 м . Капеж- ливень.	0,15

При нагнетательном способе проветривания, как правило, применяются гибкие вентиляционные трубы, а при всасывающем - жесткие. Ориентировочно диаметр гибких труб типов 1А и 1Б можно принимать согласно табл.5.3.

Коэффициент утечек воздуха для гибких трубопроводов из труб типа 1А (1Б) диаметром 0,6-1,0 м принимается по табл.5.3, $Q_{3.n}$ первоначально задается равным среднему из возможных значений, приведенных в таблице.

Таблица 5.3 - Значения коэффициента утечек воздуха для гибких вентиляционных трубопроводов из труб типа 1A и 1Б при длине звена 20 м

Расход	рицие	ент утечек воздуха, при длине трубопровода, м													
воздуха в конце трубопро-															
вода, ${\rm M}^3/{\rm c}$	50	100	200	300	400	500	600	700	800	900	1000	1200	1400	1600	2000
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				ДЈ	ія тр	уб ди	амет	ром	0,6 м						
0,5	1,01	1,02	1,07	1,14	1,22	1,31	1,43	1,56	1,72	1,90	2,40	2,60	3,23	4,06	6,47
1,0	1,01	1,03	1,08	1,15	1,24	1,36	1,50	1,67	1,87	2,11	2,40	3,12	4,14	5,57	
1,5	1,01	1,03	1,08	1,17	1,27	1,41	1,58	1,79	2,04	2,35	2,73	3,76	5,32		
2,0	1,01	1,03	1,09	1,18	1,30	1,46	1,66	1,91	2,23	2,62	3,42	4,54			
2,5	1,01	1,03	1,10	1,20	1,33	1,51	1,74	2,04	2,43	2,93	3,57				
3,0	1,01	1,03	1,10	1,21	1,36	1,57	1,83	2,19	2,65						
3,5	1,01	1,03	1,11	1,23	1,39	1,62	1,93	2,34							
4,0	1,01	1,03	1,12	1,24	1,43	1,68	2,03								
4,5	1,01	1,04	1,12	1,26	1,46	1,74									
5,0	1,01	1,04	1,13	1,28	1,49										
5,5	1,01	1,04	1,14	1,29	1,53										
6,0	1,01	1,04	1,14	1,31											
6,5	1,01	1,04	1,15	1,33											
7,0	1,01	1,04	1,16												
7,5	1,01	1,05	1,16												
8,0	1,01	1,05	1,17												

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Для труб диаметром 0,8 м															
0,5	1,01	1,01	1,04	1,08	1,13	1,18	1,24	1,31	1,39	1,47	1,57	1,79	2,04	2,35	3,13
1,0	1,01	1,02	1,04	1,08	1,13	1,19	1,26	1,34	1,43	1,52	1,63	1,89	2,21	2,60	3,63
1,5	1,01	1,02	1,05	1,09	1,14	1,21	1,28	1,37	1,46	1,58	1,70	2,01	2,39	2,87	4,23
2,0	1,01	1,02	1,05	1,09	1,15	1,22	1,30	1,39	1,50	1,63	1,77	2,13	2,58	3,17	4,90
2,5	1,01	1,02	1,05	1,10	1,16	1,23	1,32	1,42	1,54	1,69	1,85	2,25	2,79	3,50	
3,0	1,01	1,02	1,05	1,10	1,17	1,24	1,34	1,45	1,59	1,74	1,93	2,39	3,02	3,88	
3,5	1,01	1,02	1,05	1,11	1,17	1,26	1,36	1,48	1,63	1,80	2,01	2,53	3,26	4,29	
4,0	1,01	1,02	1,06	1,11	1,18	1,27	1,38	1,52	1,67	1,87	2,09	2,68	3,53	4,75	
4,5	1,01	1,02	1,06	1,11	1,19	1,29	1,40	1,55	1,72	1,93	2,18	2,85	3,82		
5,0	1,01	1,02	1,06	1,12	1,20	1,30	1,43	1,58	1,77	2,00	2,27				
5,5	1,01	1,02	1,06	1,12	1,21	1,31	1,45	1,61	1,82	2,06	2,37				
6,0	1,01	1,02	1,06	1,13	1,22	1,33	1,47	1,65	1,86	2,13	2,47				
6,5	1,01	1,02	1,07	1,13	1,22	1,34	1,49	1,68	1,92	2,21	2,57				
7,0	1,01	1,02	1,07	1,14	1,23	1,36	1,52	1,72	1,97	2,28					
7,5	1,01	1,02	1,07	1,14	1,24	1,37	1,54	1,75	2,02	2,36					
8,0	1,01	1,02	1,07	1,15	1,25	1,39	1,56	1,79	2,08						
8,5	1,01	1,02	1,07	1,15	1,26	1,40	1,59	1,83	2,13						
9,0	1,01	1,02	1,07	1,16	1,27	1,42	1,61								
9,5	1,01	1,02	1,08	1,16	1,28	1,43	1,64								
10,0	1,01	1,02	1,08	1,16	1,29	1,45	1,66								
				Į	Д ля т	руб д	иаме	тром	1,0 1	М					
0,5	1,00	1,01	1,03	1,06	1,09	1,12	1,16	1,21	1,26	1,32	1,38	1,51	1,67	1,84	2,27
1,0	1,00	1,01	1,03	1,06	1,09	1,13	1,17	1,22	1,27	1,33	1,40	1,55	1,72	1,92	2,42
1,5	1,00	1,01	1,03	1,06	1,09	1,13	1,18	1,23	1,29	1,35	1,42	1,59	1,78	2,00	2,58
2,0	1,00	1,01	1,03	1,06	1,10	1,14	1,19	1,24	1,30	1,37	1,45	1,62	1,84	2,09	2,75
2,5	1,00	1,01	1,03	1,06	1,10	1,14	1,19	1,25	1,32	1,39	1,47	1,66	1,90	2,18	2,93
3,0	1,00	1,01	1,03	1,06	1,10	1,15	1,20	1.26	1,33	1.41	1,50	1,71	1,96	2,27	3,13
3,5	1,00	1,01	1,03	1,07	1,11	1,15	1,21	1,27	1,35	1,43	1,53	1,75	2,03	2,37	3,34
4,0	1,00	1,01	1,04	1,07	1,11	1,16	1,22	1,29	1,36	1,45	1,55	1,79	2,09	2,48	3,56
4,5	1,00	1,01	1,04	1,07	1,11	1,16	1,23	1,30	1,38	1,47	1,58	1,84	2,16	2,58	3,80
5,0	1,00	1,01	1,04	1,07	1,12	1,17	1,23	1,31	1,39	1,49	1,61	1,88	2,24	2,69	
5,5	1,00	1,01	1,04	1,07	1,12	1,17	1,24	1,32	1,41	1,51	1,63	1,93	2,31	2,81	
6,0	1,00	1,01	1,04	1,08	1,12	1,18	1,25	1,33	1,43	1,54	1,66	1,98	2,39	2,93	
6,5	1,00	1,01	1,04	1,08	1,13	1,19	1,26	1,34	1,44	1,56	1,69	2,03	2,47		
7,0	1,00	1,01	1,04	1,08	1,13	1,19	1,27	1,35	1,46	1,58	1,72	2,08	2,55		
7,5	1,00	1,01	1,04	1,08	1,13	1,20	1,27	1,37	1,47	1,60	1,75	2,13			
8,0	1,00	1,01	1,04	1,08	1,14	1,20	1,28	1,38	1,49	1,63	1,78	2,18			
8,5	1,00	1,01	1,04	1,08	1,14	1,21	1,29	1,39	1,51	1,65	1,81	2,23			
9,0	1,00	1,01	1,04	1,09	1,14	1,21	1,30	1,40	1,53	1,67	1,84	2,29			
9,5	1,00	1,01	1,04	1,09	1,15	1,22	1,31	1,41	1,54	1,70	1,88	2,35			
10,0	1,00	1,00	1,04	1,09	1,15	1,22	1,31	1,43	1,56	1,72	1,91				

Затем $Q_{3.n}$ принимается равным рассчитанному $Q_{3a\delta}^{BB}$, уточняется значение коэффициента утечек воздуха. И производится окончательный расчет.

Для уменьшения коэффициента утечек воздуха и аэродинамического сопротивления гибких трубопроводов следует применять комбинированный вентиляционный трубопровод из гибких труб типов 1A и 1Б и введенного внутрь их полиэтиленового рукава и конечного участка трубопровода без полиэтиленового рукава.

Комбинированный трубопровод рекомендуется применять при диаметре труб 0,6 м и более и длине трубопровода более 400 м. Длина конечного участка без полиэтиленового рукава составляет 150-200 м. (комбинированный трубопровод допускается применять только со специальным пускорегулирующим устройством.)

При использовании комбинированного гибкого трубопровода коэффициент уточек воздуха определяется по формуле:

$$K_{ym.mp} = k_{ym.mp_1} \cdot k_{ym.mp_2}, \tag{5.5}$$

где $k_{ym.mp_1}$ - коэффициент утечек воздуха для конечного участка трубопровода (без полиэтиленового рукава) - по табл.5.3;

 $k_{\mathit{ут.mp}_2}$ - коэффициент утечек воздуха для участка трубопровода с полиэтиленовым рукавом (табл.5.4).

При определении значения $k_{ym.mp_2}$ по табл.5.4 новое значение величины расхода воздуха в конце трубопровода $Q_{_{3,n}}$ следует определять по формуле:

$$Q'_{3,n} = Q_{3,n} \cdot k_{ym,mp_1}, \, \text{M}^3/\text{MUH}.$$
 (5.6)

Таблица 5.4 — Значения коэффициентов утечек воздуха для трубопроводов с полиэтиленовым рукавом

Длина	, , , , ,		Значения коэффициента утечек воздуха									
трубопро-	трубопро-	при $Q_{\scriptscriptstyle 3,n}$, м 3 /мин										
вода, м	вода, м											
		до 150	151-300	301-450	451-600							
до 500	0,6-1,0	1,01-1,01	1,02-1,01	1,04-1,01	1,06-1,01							
501-600	0,6-1,0	1,02-1,01	1,04-1,01	1,06-1,01	1,08-1,01							
601-800	0,6-1,0	1,04-1,01	1,07-1,01	1,11-1,01	1,15-1,02							
801-1000	0,6-1,0	1,04-1,01	1,10-1,02	1,15-1,02	1,19-1,03							
1001-1500	0,6	1,11	1,23	1,25	-							
	0,8-1.0	1,03-1,02	1,06-1,03	1,11-1,05	1,14-1,06							
1501-2000	0,6	1,19	1,45	1,71	-							
	0,8-1,0	1,06-1,03	1,14-1,06	1,19-1,09	1,28-1,12							
2001-2500	0,6	1,38	1,56	_	-							
	0,8-1,0	1,12-1,04	1,23-1,10	1,35-1,4	1,40-1,19							

Из всех рассчитанных значений выбирается наибольшее и по нему производится расчет производительности вентилятора:

$$Q_{\text{вент}} = Q_{3.n} \cdot K_{\text{ут.mp}} , \text{ M}^3/\text{MUH}. \tag{5.7}$$

Для максимальной длины трубопровода и его диаметра определяется напор вентилятора:

$$h_{\text{BeHm}} = R_{mp.2} \cdot Q_{\text{BeHm}}^2 \cdot \left(\frac{0.59}{K_{ym.mp}} + 0.41\right)^2, \, \Pi a,$$
 (5.8)

где $R_{mp.e}$ - аэродинамическое сопротивление гибкого вентиляционного трубопровода без утечек воздуха, да $\Pi a \cdot c^2/M^6$.

$$R_{mp.e} = r_{mp} \cdot (l_{mp} + 20 \cdot d_{mp} \cdot n_1 + 10 \cdot d_{mp} \cdot n_2),$$
 да $\Pi a \cdot c^2 / M^6$, (5.9)

где r_{mp} – удельное аэродинамическое сопротивление гибкого вентиляционного трубопроводы без утечек воздуха, к μ /м; для труб типа 1A, 1Б при длине звена 20 м принимается для диаметров 0,2 м равным 7,86 к μ /м, 0,3 м - 1,33 к μ /м, 0,4 м - 0,304 к μ /м, 0,5 м - 0,177 к μ /м, 0,6 м - 0,071 к μ /м, 0,8 м - 0,0161 к μ /м, 1,0 м - 0,0053 к μ /м;

 d_{mp} - диаметр трубопровода, м;

 n_1 и n_2 - число поворотов трубопроводов на 90° и 45° соответственно.

Аэродинамическое сопротивление гибкого комбинированного вентиляционного трубопровода $R_{mp,\kappa}$, да $\Pi a \cdot c^2/M^6$, определяется по формуле:

$$R_{mp,\kappa} = r_{mp_1} \cdot (l_{mp_1} + 20 \cdot d_{mp_1} \cdot n_1 + 10 \cdot d_{mp_1} \cdot n_2) + r_{mp_2} \cdot (l_{mp_2} + 20 \cdot d_{mp_2} \cdot n_1 + 10 \cdot d_{mp_2} \cdot n_2),$$
 (5.10) где r_{mp_1} - соответствует r_{mp_1} из формулы (5.9);

 l_{mp_1} - длина конечного участка трубопровода без полиэтиленового рукава, м;

 $d_{\it mp_1}$ - диаметр конечного участка трубопровода без полиэтиленового рукава, м;

 r_{mp2} - удельное аэродинамическое сопротивление трубопровода с полиэтиленовым рукавом; принимается равным для диаметра трубопровода 0,6 м - 0,0194 кµ/м; 0,8 м - 0,0046 кµ/м; 1,0 м - 0,00153 кµ/м;

 $l_{\it mp_2}$ - длина участка трубопровода с полиэтиленовым рукавом, м;

 $d_{\it mp_2}$ - диаметр участка трубопровода с полиэтиленовым рукавом, м.

Выбор вентилятора местного проветривания

Тип вентилятора местного проветривания выбирается по расчётным параметрам $Q_{\it{вент}}$ и $h_{\it{вент}}$ путём их нанесения на его аэродинамическую характеристику.

Аэродинамические характеристики промышленных вентиляторов приведены на рис.5.2-5.5.

Расчетная точка должна попасть в область работы выбранного вентилятора. Если расчетные параметры выходят за пределы аэродинамической характеристики, то следует выбирать более мощный вентилятор.

В соответствии с требованиями [3] вентилятор для проветривания строящейся тупиковой выработки устанавливается в эксплуатируемой выработке, проветриваемой за счет общешахтной депрессии, со стороны свежей струи. Вентилятор не должен отбирать более 70% воздуха, проходящего по эксплуатируемой выработке.

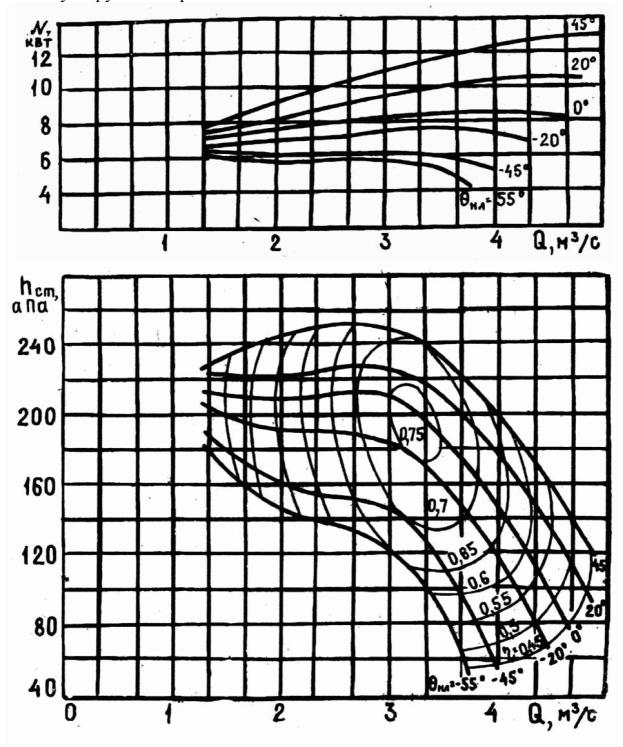


Рисунок 5.2 - Аэродинамическая характеристика вентилятора ВМ-5



Рисунок 5.3 - Аэродинамическая характеристика вентилятора ВМ-6

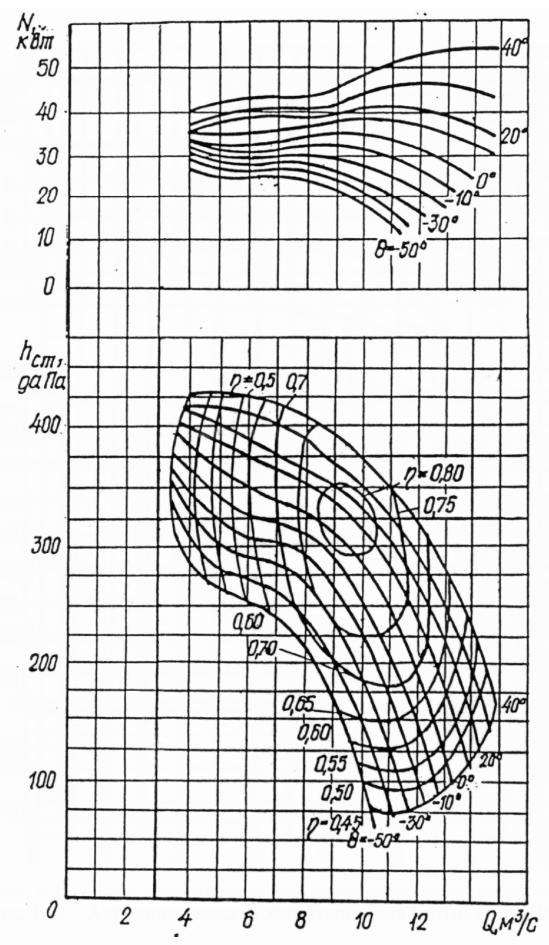


Рисунок 5.4 - Аэродинамическая характеристика вентилятора ВМ-8М

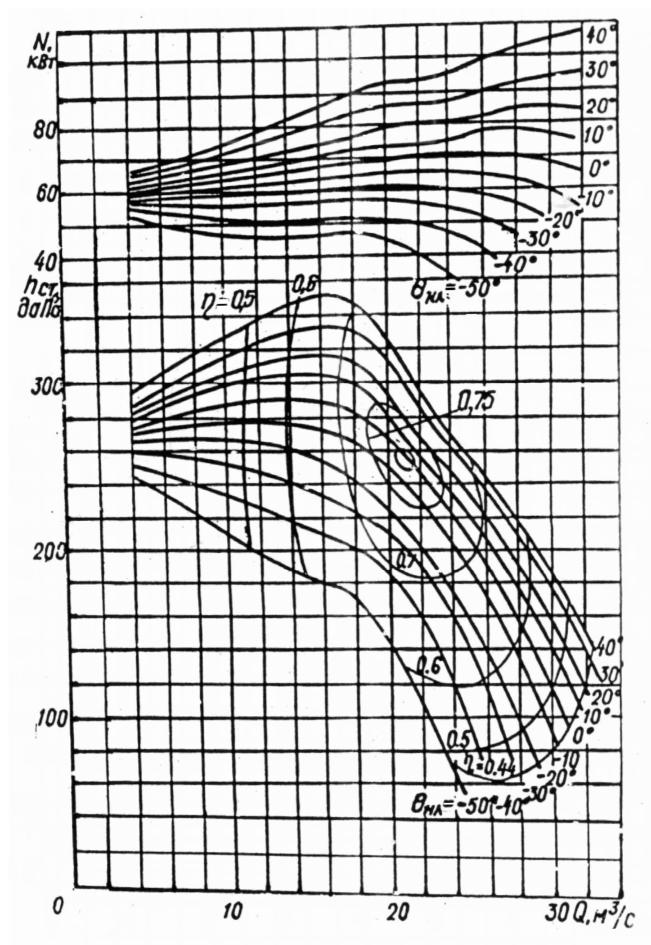


Рисунок 5.5 - Аэродинамическая характеристика вентилятора ВМЭ-12

ПЗ №6: Расчет сменной скорости проведения горной выработки проходческим комбайном

Цель занятия — изучение методики расчета сменной скорости проведения горной выработки проходческими комбайнами роторного типа и избирательного действия при конвейерном и рельсовом транспорте горной массы.

<u>Расчет сменной скорости проведения горной выработки проходческим</u> комбайном роторного типа и конвейерном транспорте горной массы

$$V_{cM} = \frac{T_{cM} - t_{n-3a\kappa}}{\frac{1}{60 \cdot V_{\text{max}} \cdot k_m} + \frac{T_{cM}}{l_p \cdot H_p \cdot n_p} + \frac{\kappa_{_H} \cdot T_{_{CM}}}{L \cdot H_{_{\kappa p}} \cdot \kappa_{_M} \cdot n_{_{\kappa p}}}, \text{ M/cmehy},$$
 (6.1)

где T_{cm} – продолжительность рабочей смены, 6 ч;

 $t_{n\text{--}3a\kappa}$ — продолжительность подготовительно-заключительных операций, 0,5 ч;

 $V_{\rm max}$ — максимальная скорость подачи исполнительного органа комбайна на забой выработки, 0,03-0,10 м/мин;

 k_m – коэффициент использования комбайна в течение смены, 0,1-0,8;

 l_p – длина рештака, м;

 H_p — норма выработки по наращиванию скребкового конвейера (определяется по ЕНиР-36 [8]);

 n_p — количество работников, занятых на наращивании скребкового конвейера, 3-4 чел.;

 κ_{H} – коэффициент несовмещенного крепления, 0,1-0,3;

L – расстояние между рамами крепи, м;

 $H_{\kappa p}$ – норма выработки на крепление (определяется по ЕНиР-36 [8]);

 κ_{M} — коэффициент механизации крепления; при использовании механических средств для возведения крепи равен 1,05-1,15;

 $n_{\kappa p}$ – количество проходчиков, занятых на креплении, чел.

<u>Расчет сменной скорости проведения горной выработки проходческим комбайном роторного типа и рельсовом транспорте горной массы</u>

$$V_{\scriptscriptstyle CM} = \frac{T_{\scriptscriptstyle CM} - t_{\scriptscriptstyle n-3a\kappa}}{\frac{1}{60 \cdot V_{\scriptscriptstyle \max} \cdot k_{\scriptscriptstyle m}} + \frac{S_{\scriptscriptstyle np} \cdot k_{\scriptscriptstyle p} \cdot \left(\frac{l}{V_{\scriptscriptstyle \it cp}} + \frac{l}{V_{\scriptscriptstyle \it nop}} + \Theta\right)}{3600 \cdot V_{\scriptscriptstyle \it cocm}} + \frac{\kappa_{\scriptscriptstyle \it H} \cdot T_{\scriptscriptstyle \it cM}}{L \cdot H_{\scriptscriptstyle \it \kappa p} \cdot \kappa_{\scriptscriptstyle \it M} \cdot n_{\scriptscriptstyle \it \kappa p}}, \text{M/cmehy, (6.2)}$$

где S_{np} – площадь сечения выработки в проходке, м²;

 k_p – коэффициент разрыхления породы;

l – длина откатки состава до разминовки, 50-100 м;

 V_{zp} – скорость передвижения груженого состава, 1 м/с;

 V_{nop} — скорость передвижения порожнего состава, 1,5 м/с;

 Θ – продолжительность концевых операций, 180-200 с;

 V_{cocm} – емкость состава вагонеток под перегружателем, м³,

$$V_{cocm} = \Psi \cdot n_{gaz} \cdot V_{gaz}, \text{ m}^3, \tag{6.3}$$

где Ψ – коэффициент загрузки вагонетки, 0,9;

 $n_{\it eac}$ – количество вагонеток под перегружателем, шт.;

 $V_{\textit{ваг}}$ – емкость вагонетки, м³.

<u>Расчет сменной скорости проведения горной выработки проходческим</u> комбайном избирательного действия и конвейерном транспорте горной массы

$$V_{_{CM}} = \frac{T_{_{CM}} - t_{_{n-3AK}}}{S_{np}}, \text{ M/cmehy, (6.4)}$$

$$\frac{S_{_{np}}}{3600 \cdot m \cdot b \cdot V_{_{n.max}} \cdot K_{_{9}}} + \frac{T_{_{CM}}}{l_{_{p}} \cdot H_{_{p}} \cdot n_{_{p}}} + \frac{\kappa_{_{H}} \cdot T_{_{CM}}}{L \cdot H_{_{KP}} \cdot \kappa_{_{M}} \cdot n_{_{KP}}}$$

где m — толщина вынимаемого слоя (зависит от диаметра исполнительного органа комбайна), м;

b — величина заглубления исполнительного органа комбайна в массив, м; $V_{n.\max}$ — максимальная скорость перемещения исполнительного органа комбайна по забою выработки, 0,14-0,28 м/с;

 K_9 – коэффициент использования комбайна в течение смены, 0,3-0,7.

<u>Расчет сменной скорости проведения горной выработки проходческим комбайном избирательного действия и рельсовом транспорте горной массы</u>

$$V_{cM} = \frac{T_{cM} - t_{n-3a\kappa}}{S_{np}}, \text{M/cmehy.} (6.5)$$

$$\frac{S_{np}}{3600 \cdot m \cdot b \cdot V_{n.max} \cdot K_{3}} + \frac{S_{np} \cdot k_{p} \cdot \left(\frac{l}{V_{zp}} + \frac{l}{V_{nop}} + \Theta\right)}{3600 \cdot V_{cocm}} + \frac{\kappa_{H} \cdot T_{cM}}{L \cdot H_{\kappa p} \cdot \kappa_{M} \cdot n_{\kappa p}}$$

<u>Пример расчета сменной скорости проведения горной выработки проходческим комбайном избирательного действия и конвейерном транспорте горной массы</u>

Исходные данные:

Прочность пород, МПа	50	$K_{\scriptscriptstyle H}$	0,52
$n_{\kappa p}$	4	l_p , M	1,43
S_{np} , M^2	12,7	т, м	0,5
$L_{\kappa p},\mathrm{M}$	0,8	<i>b</i> , м	0,4
$V_{n.max}$, M/c	0,14	n_{np}	3
K_9	0,5	$n_{\kappa p}$	4

Норма выработки на крепление равна $H_{\kappa p}=6$ / 6,4 = 0,94, где 6,4 ч - норма

времени на крепление по ЕНиР-36 для приведенных условий.

Норма выработки на наращивание скребкового конвейера равна $H_p = 6 / 2,0 = 3,0$, где 2,0 ч - норма времени на наращивание скребкового конвейера по ЕНиР-36 для приведенных условий.

По формуле (6.4):

$$V_{\text{\tiny CM}} = \frac{6 - 0.5}{\frac{12.7}{3600 \cdot 0.5 \cdot 0.4 \cdot 0.14 \cdot 0.5} + \frac{6}{1.43 \cdot 1.0 \cdot 3.0 \cdot 3} + \frac{0.52 \cdot 6}{0.8 \cdot 0.94 \cdot 1.05 \cdot 4}} = 3.22 \text{ M/cmehy}.$$

Принимаем сменную скорость, равную $3,2\,$ м, т.е. за смену устанавливается 4 рамы с шагом $0,8\,$ м.

<u>Пример расчета сменной скорости проведения горной выработки проходческим комбайном избирательного действия и рельсовом транспорте горной массы</u>

Исходные данные:

теходиме даниме.			
Прочность пород, МПа	50	V_{zp} , m/c	1,0
S_{np} , M^2	12,7	V_{nop} , M/c	1,5
т, м	0,5	Ө, с	200
<i>b</i> , м	0,4	V_{cocm} , M^3	14,85
$V_{n.max}$, M/C	0,14	$\mathcal{K}_{\mathcal{H}}$	0,56
K_9	0,5	<i>L</i> , м	0,5
k_p	2 ,0	$\mathcal{K}_{\mathcal{M}}$	1,05
<i>l</i> , м	100	$n_{\kappa p}$	4

Норма выработки на крепление равна $H_{\kappa p}=6$ / 6,4 = 0,94, где 6,4 ч - норма времени на крепление по ЕНиР-36 для приведенных условий.

$$V_{\scriptscriptstyle CM} = \frac{6 - 0.5}{\frac{12.7}{3600 \cdot 0.5 \cdot 0.4 \cdot 0.14 \cdot 0.5} + \frac{12.7 \cdot 2 \cdot \left(\frac{100}{1} + \frac{100}{1.5} + 200\right)}{3600 \cdot 14.85} + \frac{0.56 \cdot 6}{0.5 \cdot 0.94 \cdot 1.05 \cdot 4}} = 3 \cdot 1 \text{ м/смену}.$$

Принимаем сменную скорость, равную $3.0 \, \text{м}$, т.е. за смену устанавливается $6 \, \text{рам c}$ шагом $0.5 \, \text{м}$.

ПЗ №7: Расчет объемов работ по процессам, расчет нормы выработки. Расчет состава комплексной проходческой бригады

Цель занятия — изучение методики расчета объемов работ, норм выработки по процессам проходческого цикла и определения состава комплексной проходческой бригады.

При буровзрывной технологии проведения длина заходки, l_{3ax} , должна обеспечивать достижение месячной скорости проведения горной выработки не меньшей, чем нормативная. Длина заходки определяется из выражения (7.1).

$$l_{3ax} = \frac{V_{np} \cdot T_{u}}{n_{\partial u} \cdot T_{cym}}, \text{ M},$$
 (7.1)

где V_{np} - нормативная месячная скорость проведения выработки, м/мес;

 $T_{\it u}$ - продолжительность проходческого цикла при проведении выработки, ч (6, 9 или 12 ч);

 $n_{\partial H}$ - количество рабочих дней по проведению выработки в течение месяца (в среднем по году – 25,6);

 $T_{\it cvm}$ - количество часов по проведению выработки в течение суток, ч.

Длина заходки должна быть кратной шагу крепи.

Расчет объемов работ.

Объем работ по бурению шпуров по углю равен:

$$V_{\delta,yz} = \sum_{i=1}^{N_{u,yz}} l_{u,yz_i} = , \, M,$$
 (7.2)

где $N_{u.yz}$ - количество шпуров по углю, шт.;

 $l_{u.y_{\mathcal{E}_i}}$ - длина i–го шпура по углю, м.

Объем работ по бурению шпуров по породе равен:

$$V_{\delta.n.} = \sum_{i=1}^{N_{u.n.}} l_{u.n.}, \, M, \tag{7.3}$$

где $N_{w.n}$ - количество шпуров по породе, шт.;

 $l_{\mathit{u.n_i}}$ - длина шпура по породе, м.

Объем погрузки угля определяется:

$$V_{n,yz} = S_{np,yz} \cdot l_{sax}, \,\mathbf{M}^3, \tag{7.4}$$

где $S_{np,yz}$ - площадь угольного забоя в проходке, м².

Объем погрузки породы определяется:

$$V_{n.n.} = S_{np.n} \cdot l_{3ax}, \,\mathbf{M}^3, \tag{7.5}$$

где $S_{np,n}$ - площадь породного забоя в проходке, м².

Объем работ по возведению металлической арочной крепи равен:

$$V_{\kappa p} = \frac{l_{3ax}}{L_{\kappa p}}, \text{ pam}, \tag{7.6}$$

где $L_{\kappa p}$ - расстояние между рамами крепи (шаг крепи), м.

Объем работ по настилке рельсового пути равен:

$$V_{H,pen} = l_{3ax}, \text{ M.} (7.7)$$

Объем работ по наращиванию скребкового конвейера определяется:

$$V_{\kappa_{OHB}} = \frac{l_{3ax}}{l_{neum}}, \text{ peum}, \qquad (7.8)$$

где $l_{\it peum}$ - длина рештака, м.

Объемы работ по креплению водоотливной канавки, наращиванию противопожарно-оросительного и вентиляционного трубопроводов равны длине заходки:

$$V_{K.K.} = V_{H.mp} = V_{B.mp} = l_{3ax}, M.$$
 (7.9)

Расчет норм выработки по работам проходческого цикла.

Норма выработки определяется для каждой из работ проходческого цикла следующим образом:

$$H_{g_i} = \frac{T_{cM}}{H_{gp,noEHuP}} \cdot K_1 \cdot K_2, \tag{7.10}$$

где $T_{_{CM}}$ - продолжительность смены, 6 ч;

 $H_{\it ep_i no E Hu P}$ - норма времени по соответствующей работе из ЕНиР-36, ч/ед.изм.;

 K_1 - коэффициент, учитывающий применение новой техники:

$$K_1 = \frac{\Pi_{\mu.o.}}{\Pi_{\delta aa}},\tag{7.11}$$

где $\Pi_{\scriptscriptstyle H.o.}$ - производительность нового оборудования, ед.изм.;

 $\Pi_{\scriptscriptstyle H.O.}$ - производительность базового оборудования, указанного в ЕНиР-36, ед.изм.;

 K_2 - коэффициент, учитывающий применение новой технологии, 1,05-1,15.

Расчет трудоемкости работ проходческого цикла.

Трудоемкость каждой из работ проходческого цикла рассчитывается следующим образом:

$$n_i' = \frac{V_i}{H_{s_i}}$$
, чел.-смен. (7.12)

Результаты расчетов заносятся в табл. 7.1.

Таблица 7.1 – Расчет норм выработки и трудоемкости работ проходческого цикла

Наименование							Трудоемкость,
работы	изм.	работы	по ЕНиР	K_1	К2	принятая	челсмен
Бурение шпуров по углю	M	$V_{ m 6.ye}$				$H_{\mathit{6.ye}}$	$n'_{\text{6.y2}} = \frac{V_{\text{6.y2}}}{H_{\text{6.y2}}}$
Бурение шпуров по породе	М	$V_{\sigma.n.}$				$H_{\delta.n}$	$n'_{\delta.n.} = \frac{V_{\delta.n.}}{H_{\delta.n.}}$
Погрузка угля	м ³	$V_{n.ye}$				$H_{n.ye}$	$n'_{n.yz} = \frac{V_{n.yz}}{H_{n.yz}}$
Погрузка породы	м ³	$V_{n.n.}$				$H_{n.n}$	$n'_{n.n.} = \frac{V_{n.n.}}{H_{n.n.}}$
Крепление	рам	$V_{\kappa p}$				$H_{\kappa p}$	$n'_{\kappa p} = \frac{V_{\kappa p}}{H_{\kappa p}}$
Настилка рельсового пути	M	$V_{\scriptscriptstyle H.pen}$				Н _{н.рел}	$n'_{H.pen} = \frac{V_{H.pen}}{H_{H.pen}}$
Наращивание скребкового конвейера	решт.	$V_{\kappa o ext{\tiny } ex$				$H_{\kappa o ext{ iny B}}$	$n'_{\kappa o \mu e} = \frac{V_{\kappa o \mu e}}{H_{\kappa o \mu e}}$
Крепление водоотливной канавки	M	$V_{\kappa.\kappa.}$				$H_{\kappa.\kappa}$	$n'_{\kappa.\kappa.} = \frac{V_{\kappa.\kappa.}}{H_{\kappa.\kappa.}}$
Наращивание противопожарно – оросительного трубопровода	M	$V_{{\scriptscriptstyle H.mp}}$				$H_{{\scriptscriptstyle H.mp}}$	$n'_{\scriptscriptstyle H.mp} = \frac{V_{\scriptscriptstyle H.mp}}{H_{\scriptscriptstyle H.mp}}$
Наращивание вентиляционного трубопровода	М	$V_{\scriptstyle e.mp}$				$H_{e.mp}$	$n'_{s.mp} = \frac{V_{s.mp}}{H_{s.mp}}$
							$\sum n_{u}^{/}$

Расчет состава комплексной проходческой бригады

Явочный состав проходческого звена, n_{se} , принимается путем округления до меньшего целого значения $\sum n_u^{/}$.

Коэффициент перевыполнения нормы выработки равен:

$$K_n = \frac{\sum n_u'}{n_{gg}}. (7.13)$$

Он должен находиться в интервале 1,03-1,25.

Явочный суточный состав проходческой бригады определяется:

$$N_{\text{яв.сут.}} = n_{\text{яв}} \cdot n_{\text{см.раб}}, \text{ чел.},$$
 (7.14)

где $n_{_{CM,pa6}}$ - количество смен по проведению выработки в сутки, смен.

Списочный суточный состав проходческой бригады определяется:

$$N_{cn.cym.} = N_{se.cym.} \cdot K_{cn}$$
, чел., (7.15)

где K_{cn} - коэффициент списочного состава бригады, 1,6-1,8.

Рассмотрим пример расчета для следующих условий:

- пересекаемые породы:
 - кровля песчаник прочностью 80 МПа;
 - почва песчаник прочностью 70 МПа;

пласт угля $m_v=1.0$ м, прочность угля 15МПа;

- угол падения пласта 30°;
- количество рельсовых путей -1;
- ширина колеи 900 мм;
- расстояние между шпалами -0.7 м;
- оборудование на период проведения выработки:

бурение шпуров по углю СЭР-19М;

бурение шпуров по породе и погрузка горной массы - проходческим комплексом 2БА-ПНБ-3Д;

электровоз АРП14-2;

конвейер 1ЛТ-80;

- длина выработки 540 м;
- глубина заложения 1020 м;
- площадь сечения выработки вчерне $S_{\text{вч}} = 18,7 \text{ м}^2$;
- крепь металлическая податливая арочная 3-хзвенная КМП-А3 из СВП-19;
- шаг крепи 0,5 м;
- срок службы 10 лет.
- V_{np} установлено равным 150 м/мес;
- $T_{\it u}$ задаемся равным 6 ч (цикл в смену);
- $n_{\partial n}$ принимаем по среднегодовому значению равным 25;

- $T_{\text{сут}}$ равно 18 ч (3 смены по проведению и 1 смена — ремонтно-подготовительная).

Длина заходки определяется из выражения (7.1).

$$l_{3ax} = \frac{150 \cdot 6}{25 \cdot 18} = 2,0 \text{ M}.$$

<u>Определяем объемы работ (используются результаты расчета паспорта</u> БВР, полученные в ПЗ №4).

Объем работ по бурению шпуров по углю (табл.4.1) равен:

$$V_{6,yz} = 4 \cdot 2,20 + 6 \cdot 2,10 = 21,4 \text{ M}.$$

Объем работ по бурению шпуров по породе (табл.4.2) равен:

$$V_{6.n.} = 5 \cdot 2,10 + 7 \cdot 2,05 + 2 \cdot 2,10 + 7 \cdot 2,05 + 1 \cdot 2,10 + 5 \cdot 2,05 + 1 \cdot 2,10 + 5 \cdot 2,05 + 1 \cdot 2,10 + 3 \cdot 2,05 + 1 \cdot 2,10 + 2 \cdot 2,05 + 1 \cdot 2,10 + 8 \cdot 2,10 + 2 \cdot 2,10 + 1 \cdot 2,15 = 107,8 \text{ } \textit{m}.$$

Объем погрузки угля определяется:

$$S_{np.ye} = 1,05 \cdot 3,78 = 3,97 \text{ м}^2$$
 (по формуле 2.4 с учетом табл.3.6).

$$V_{n,yz} = 3.97 \cdot 2 = 7.94 \text{ m}^3.$$

Объем погрузки породы определяется:

верхняя подрывка $S_{np.n.s} = 1,10 \cdot 1,3 = 1,43 \text{ м}^2$ (по формуле 2.4 и табл.3.6);

$$V_{n,n,6} = 1,43 \cdot 2 = 2,86 \text{ m}^3;$$

нижняя подрывка $S_{np.n.н} = 17,96 - 1,43 - 3,97 = 12,56 \text{ м}^2$;

$$V_{n.n.H} = 12,56 \cdot 2 = 25,12 \text{ m}^3.$$

Суммарный объем породы $V_{n.n.} = 2,86 + 25,12 = 27,98 \text{ м}^3$.

Объем работ по возведению металлической арочной крепи равен:

$$V_{\kappa p} = \frac{2.0}{0.5} = 4$$
 pamы.

Объем работ по настилке рельсового пути из Р33 на ж/б шпалах равен:

$$V_{\mu peq} = l_{gar} = 2 \text{ M}.$$

Объемы работ по креплению водоотливной канавки, наращиванию противопожарно-оросительного и вентиляционного трубопроводов равны длине заходки:

$$V_{\kappa.\kappa.} = V_{\textit{н.mp}} = V_{\textit{в.mp}} = l_{\textit{зах}} = 2 \text{ м}.$$

<u>Расчет норм выработки и трудоемкости</u> работ проходческого цикла сведен в табл.7.2.

Таблица 7.2 – Расчет норм выработки и трудоемкости работ проходческого цикла

Наименование	Ед.	Объем	Норм	а выра	аботки	[Трудоемкость,
работы	изм.	работы	по ЕНиР	К1	К2	принятая	челсмен
Бурение шпуров по углю	M	21,4	$\frac{6,0}{0,09} = 66,7$	1	1	66,7	0,32
Бурение шпуров по породе	M	107,8	$\frac{6,0}{0,07} = 85,7$	1	1	85,7	1,26
Погрузка угля	м ³	7,94	$\frac{6,0}{0,33} = 18,2$	1	1	18,2	0,44
Погрузка породы	м ³	27,98	$\frac{6.0}{0.33} = 18.2$	1	1	18,2	1,54
Крепление	рам	4	$\frac{6,0}{13,0} = 0,46$	1,05*	1,05*	0,51	7,86
Настилка рельсового пути	M	2,0	$\frac{6,0}{1,4} = 4,28$	1	1	4,28	0,47
Крепление водоотливной канавки	M	2,0	$\frac{6,0}{0,85} = 7,06$	1	1	7,06	0,28
	•	•	•			•	12,17

^{*} для подъема верхняка крепи применяют манипуляторы навесного бурильного оборудования 2БА

Наращивание трубопроводов производится в ремонтно-подготовительную смену.

Расчет состава комплексной проходческой бригады

Явочный состав проходческого звена, $n_{_{\mathit{Яб}}}$ принимаем равным 11 чел.

Коэффициент перевыполнения нормы выработки равен:

$$K_n = \frac{12,17}{11} = 1,10.$$

Явочный суточный состав проходческой бригады определяется:

$$N_{\text{яв.сут.}} = 11 \cdot 3 = 33$$
 чел.

Списочный суточный состав проходческой бригады определяется:

$$N_{cn.cvm.} = 33 \cdot 1,6 = 53$$
 чел.

Порядок построения графика организации работ рассмотрен в ПЗ №8.

ПЗ №8: Построение графика организации работ.

Цель занятия — изучение методики расчета продолжительности работ проходческого цикла, порядка построения графика организации работ и его проверки при буровзрывной и комбайновой технологиях.

Расчет продолжительности работ проходческого цикла начинается с установки значения его продолжительности, $T_{\rm u}$, в зависимости от $S_{\rm np.}$, $l_{\rm sax.}$, f, угла наклона выработки, водопритока и метановыделения при проведении. $T_{\rm u}$ может равняться продолжительности одной смены (6 ч), 1,5 смен (9 ч) или 2-х смен (12 ч).

<u>При буровзрывной технологии</u> проведения горной выработки для определения продолжительности работ проходческого цикла необходимо рассчитывать коэффициент α. Он учитывает ненормированнные (на которые нет норм времени в ЕНиР) работы проходческого цикла и определяется из выражения (8.1).

$$\alpha = \frac{T_{u} - t_{n.c.} - t_{3ap.yz} - t_{npos.yz} - t_{3ap.n.} - t_{npos.n.} - t_{p}}{T_{u}},$$
(8.1)

где $t_{n.c.}$ — продолжительность приема-сдачи смены, 10-15 мин;

 $t_{{\it sap.ye}}$ — продолжительность заряжания шпуров по углю, мин;

 $t_{npoe,yz}$ - продолжительность проветривания выработки после взрывания по углю, 10-30 мин;

 $t_{_{3ap.n.}}$ — продолжительность заряжания шпуров по породе, мин;

 $t_{npos.n.}$ - продолжительность проветривания выработки после взрывания по породе, 15-30 мин;

 t_p - резервное время, 10-30 мин.

Продолжительность заряжания шпуров по углю равна:

$$t_{3ap.yz} = \frac{N_{u.yz} \cdot t_{3ap}^{1u}}{n_{3ap.yz}}, \text{ мин,}$$
 (8.2)

где $N_{u.y.}$ - количество шпуров по углю, шт.;

 $t_{_{3ap}}^{1u}$ - продолжительность заряжания одного шпура, 3-5 мин;

 $n_{_{3ap.ye}}$ - количество заряжающих по углю, чел.

Продолжительность заряжания шпуров по породе равна:

$$t_{_{3ap.n.}} = \frac{N_{_{u.n.}} \cdot t_{_{3ap}}^{1u}}{n_{_{3ap.n.}}},$$
 мин, (8.3)

где $N_{u.n.}$ - количество шпуров по породе, шт.;

 $n_{{\it sap.n.}}$ - количество заряжающих по породе, чел.

Время бурения шпуров по углю:

$$t_{\delta,yc} = \frac{\alpha \cdot T_{cM} \cdot n_{\delta,yc}^{\prime}}{n_{\delta,yc} \cdot K_n}, \quad u,$$
 (8.4)

где n_{δ,v_2} - число проходчиков, занятых бурением шпуров по углю, чел.

Время бурения шпуров по породе:

$$t_{\sigma.n.} = \frac{\alpha \cdot T_{cM} \cdot n_{\sigma.n.}^{\prime}}{n_{\sigma.n} \cdot K_{n}}, \quad \nu,$$
(8.5)

где $n_{\delta,n}$ - число проходчиков, занятых бурением шпуров по породе, чел.

Время погрузки угля:

$$t_{n,yz} = \frac{\alpha \cdot T_{cM} \cdot n_{n,yz}^{\prime}}{n_{n,yz} \cdot K_n}, \quad u,$$
 (8.6)

где n_{n,y_2} - число проходчиков, занятых погрузкой угля (с учетом обслуживающих транспортную цепочку), чел.

Время погрузки породы:

$$t_{n.n.} = \frac{\alpha \cdot T_{cM} \cdot n_{n.n.}^{\prime}}{n_{n.n.} \cdot K_{n}}, \quad u, \tag{8.7}$$

где $n_{n.n.}$ - число проходчиков, занятых погрузкой породы (с учетом обслуживающих транспортную цепочку), чел.

Время настилки рельсового пути:

$$t_{\text{H.pen}} = \frac{\alpha \cdot T_{\text{cm}} \cdot n_{\text{H.pen}}^{\prime}}{n_{\text{H.pen}} \cdot K_{n}}, \quad q,$$
 (8.8)

где $n_{_{H.pen}}$ - число проходчиков, занятых настилкой рельсового пути, 3-4 чел.

Время наращивания секций скребкового конвейера:

$$t_{\text{\tiny KOHB}} = \frac{\alpha \cdot T_{\text{\tiny CM}} \cdot n_{\text{\tiny KOHB}}^{/}}{n_{\text{\tiny KOHB}} \cdot K_{n}}, \ \ \nu, \tag{8.9}$$

где $n_{_{\!\scriptscriptstyle KOHB}}$ - число проходчиков, занятых наращиванием секций скребкового конвейера, 3-4 чел.

Время крепления водоотливной канавки:

$$t_{\kappa.\kappa.} = \frac{\alpha \cdot T_{cM} \cdot n_{\kappa.\kappa.}^{\prime}}{n_{\kappa \kappa} \cdot K_{n}}, \quad \nu,$$
 (8.10)

где $n_{\kappa,\kappa}$ - число проходчиков, занятых креплением водоотливной канавки, 2-3 чел.

При возведении постоянной крепи число проходчиков меняется. Поэтому определяют трудоемкость этой работы по формуле (8.11):

$$t_{\kappa p}^{\prime} = \frac{\alpha \cdot T_{cM} \cdot n_{\kappa p}^{\prime}}{K_{n}}, \quad \forall e \pi - \nu.$$
 (8.11)

После определения продолжительностей работ проходческого цикла строится график организации работ на цикл с учетом технологической совместимости выполняемых работ и требований [5].

Проверка правильности построения графика организации работ производится по формуле (8.12):

$$t_{\kappa p}^{\prime} = \sum_{i=1}^{n_{se}} n_{\kappa p_i} \cdot t_{\kappa p_i} \pm 1, \quad \text{ven} - \text{v}.$$
 (8.12)

Пример

Расчет продолжительности работ проходческого цикла и построение графика организации работ выполнен для условий, приведенных в ПЗ №7.

Задаемся продолжительностью $T_{u} = T_{cm} = 6$ ч = 360 мин.

Продолжительность заряжания шпуров по углю равна:

$$t_{3ap.yz} = \frac{10 \cdot 3}{3} = 10$$
 мин.

Продолжительность заряжания шпуров по породе равна:

$$t_{3ap.n.} = \frac{52 \cdot 3}{3} = 52$$
 мин.

$$\alpha = \frac{360 - 10 - 10 - 10 - 52 - 20 - 20}{360} = 0,66.$$

Время бурения шпуров по углю:

$$t_{\text{6.ye}} = \frac{0.66 \cdot 6 \cdot 0.32}{3 \cdot 1.10} = 0.385 \ \text{v} = 23 \ \text{мин.}$$

Время бурения шпуров по породе:

$$t_{\delta.n.} = \frac{0.66 \cdot 6 \cdot 1.26}{4 \cdot 1.10} = 1.13 \ \ u = 1 \ \ u \ 08 \ \$$
 мин.

Время погрузки угля:

$$t_{n,yz} = \frac{0.66 \cdot 6 \cdot 0.44}{5 \cdot 1.10} = 0.31 \ u = 19 \ \text{мин.}$$

Время погрузки породы:

$$t_{n.n.} = \frac{0.66 \cdot 6 \cdot 1.54}{5 \cdot 1.10} = 1.10_0 u = 1 u 06$$
 мин.

Время настилки рельсового пути:

$$t_{n.pen} = \frac{0.66 \cdot 6 \cdot 0.47}{4 \cdot 1.10} = 0.42 \ \textit{ч} = 25 \ \textit{мин}.$$

Время крепления водоотливной канавки:

$$t_{\kappa.\kappa.} = \frac{0.66 \cdot 6 \cdot 0.28}{3 \cdot 1.10} = 0.34 \ \text{ч} = 20 \ \text{мин}.$$

Трудоемкость крепления:

$$t_{\kappa p}^{\prime} = \frac{0.66 \cdot 6 \cdot 7.86}{1.10} = 28.3 \text{ чел} - 4.$$

По полученным значениям строим график организации работ на цикл с учетом технологической совместимости выполняемых работ и требований [5] (рис.8.1). Рекомендуется количество проходчиков, занятых на выполнении определенной работы показывать соответствующим числом горизонтальных линий.

Наименование работы	Количество проходчиков,	Продолжи	тельность			1 сме	на	3.2	250	
	чел	ч	мин	8	9	10	11	12	13	14
Прием-сдача смены	11	-	10							
Погрузка породы	5	1	06							
Бурение шпуров по углю	3	-	23							
Заряжание шпуров по углю	3	-	10							
Взрывание и проветривание по углю	11	-	10							
Погрузка угля	5	-	19							
Бурение шпуров по породе	4	1	08							
Заряжание шпуров по породе	3	-	52							1
Взрывание и проветривание по породе	11	-	20							
Крепление	6-11-1-4 -6-11-7	3	58							
Настилка постоянного рельсового пути			25							
Крепление водоотливной канавки	3	121	20							
Резервное время	11	-	20							

Рисунок 8.1 – График организации работ при буровзрывной технологии проведения

Проверка правильности построения графика организации работ: по графику организации работ трудоемкость крепления равна

$$t_{\kappa p}' = 6 \cdot \frac{66}{60} + 11 \cdot \frac{49}{60} + 1 \cdot \frac{20}{60} + 4 \cdot \frac{3}{60} + 6 \cdot \frac{19}{60} + 11 \cdot \frac{13}{60} + 7 \cdot \frac{68}{60} = 27,72 \quad \text{uen-u};$$

по ранее выполненному расчету она равна 28,3 чел-ч.

Разница составляет 0,52 чел-ч, что меньше 1 чел-ч, следовательно, график построен верно.

При комбайновой технологии проведения коэффициент α определяется:

$$\alpha = (T_{cM} - t_{n.c} - t_{pes}) / T_{cM}. \tag{8.13}$$

Продолжительность выемки горной массы комбайном равна:

$$t_{e} = (n_{e}^{/} \cdot T_{cM} \cdot \alpha) / (n_{e} \cdot \kappa_{n}), \text{ MUH}, \tag{8.14}$$

где $n_{g}^{/}$ — трудоемкость выемки горной массы комбайном;

 n_{e} — количество проходчиков, занятых на выемке горной массы комбайном и ее транспортировании, чел.;

 κ_n – см. формулу 7.13.

$$n_e^{/} = \frac{V_{cM} \cdot S_{np}}{H_e}, \tag{8.15}$$

где $H_{\rm s}$ — норма выработки из ЕНиР-36 по выемке горной массы проходческим комбайном.

Количество перерывов в работе комбайна избирательного действия равно числу установленных рам. Продолжительность выемки горной массы на шаг крепи определяется:

$$t_g^{1p} = t_g / n_{nep}$$
, мин, (8.15)

где n_{nep} – количество перерывов в работе комбайна.

Продолжительность остальных видов работ определяется по формулам (8.8) - (8.10), а трудоемкость крепления — по формуле (8.11).

График организации работ на смену при применении комбайна КСП-32 и транспортировании горной массы в вагонетках приведен на рис.8.2.

Операция,	505	Вре	емя							1 c	мен	а, ч					
процесс	Kon- Bo	Час	МИН		8		9			10)	11		1:	2	1	3
Прием, сдача смены	6	-	12	6													[
Работа комбайна	4	2	37		4		4		4	1		4		4			
Крепление штрека	2-6-4	5	43		2	6	2	6	2	2	6	2	6	2	6	4	4
Настилка рельсового пути	2	ı	55													2	
Крепление водосточной канавки	2	-	17														2
Резервное время	6	-	5														6

Рисунок 8.2 – График организации работ при комбайновой технологии проведения

Проверка правильности построения также выполняется по трудоемкости крепления.

ПЗ №9*: Определение технико-экономических показателей проведения выработки

Цель занятия — изучение методики определения технико-экономических показателей проведения горной выработки при буровзрывной и комбайновой технологиях.

Расчет комплексной нормы выработки

Комплексная норма выработки в линейных единицах определяется: при БВР

$$H_{\kappa OMNR} = \frac{l_{3ax}}{\sum n_u^{\prime}}, \text{ м/чел.-смену};$$
 (9.1)

при комбайновой технологии

$$H_{\kappa o M n \pi} = \frac{V_{c M}}{\sum n_{u}^{\prime}}, \text{ м/чел.-смену.}$$
 (9.2)

Комплексная норма выработки в объемных единицах определяется:

$$H_{\kappa OM n_{\pi}}^{\prime} = H_{\kappa OM n_{\pi}} \cdot S_{cs}, \text{ м}^{3}/\text{чел.-смену}.$$
 (9.3)

Расчет производительности труда проходчика

Производительность труда проходчика на выход в линейных единицах определяется:

при БВР

$$P_{np} = \frac{l_{_{3ax}}}{n_{_{ao}}}, \text{ м/выход;}$$
 (9.4)

при комбайновой технологии

$$P_{np} = \frac{V_{cM}}{n_{co}}, \text{ м/выход.}$$
 (9.5)

Производительность труда проходчика на выход в объемных единицах определяется:

$$P_{np}^{\prime} = P_{np} \cdot S_{c\theta}, \text{ м}^3/\text{выход.}$$
 (9.6)

Определение затрат на проведение выработки.

Вначале определяют затраты на проведение 1 м выработки по прямым нормируемым расходам (по забойным затратам):

$$C_{\text{II.H}} = C_3 + C_M + C_{\text{M.c}}, \text{ py6/M},$$
 (9.7)

где C_3 - затраты на проведение 1 м выработки по прямой заработной плате, руб/м;

 $C_{\rm M}$ - затраты на проведение 1 м выработки по материалам, руб/м;

 $C_{\text{м.c}}$ - затраты на проведение 1 м выработки по эксплуатации забойных машин и механизмов, руб/м.

Расчет С₃ осуществляется по формуле:

$$C_{_3} = T_5 \cdot \frac{n_u^{\prime}}{l_{_{3ax}}}, \text{ py6/m}. \tag{9.8}$$

где T_5 - тарифная ставка проходчика пятого разряда, руб.

Расчет затрат на 1 м проведения выработки по материалам:

Расчет $\sum C_{_{M_i}}$ производят на цикл (при БВР) или на смену (при комбайновой технологии) в виде табл. 9.1.

Таблица 9.1 – Затраты по материалам на цикл

Материал	Расход	Процент	Факти-	Цена	Суммарные
	на цикл	исполь-	ческий	единицы	затраты,
	(смену)	зования	расход	материала,	руб
				руб	
Итого:					$\sum C_{_{M_i}}$

Затраты на проведение 1 м выработки по материалам равны: при БВР

$$C_{M} = 1.05 \cdot \frac{\sum C_{M_{i}}}{l_{3ax}}, \text{ py6/m};$$
 (9.9)

при комбайновой технологии

$$C_{M} = 1,05 \cdot \frac{\sum C_{M_{i}}}{V_{CM}}, \text{ py6/M}.$$
 (9.10)

Расчет затрат на 1 м проведения выработки по эксплуатации машин и механизмов производят на цикл (при БВР) или на смену (при комбайновой технологии) в виде табл.9.2.

Таблица 9.2 – Затраты по эксплуатации машин и механизмов на цикл

Машины и	Кол-во	Время	Общий	Полная	Суммарные
механизмы	машин и	использо-	расход	цена	затраты на
	механиз-	вания, ч	машсмен	машино-	проведение,
	MOB		на цикл	смены, руб.	руб.
			(смену)		
Итого:					$\sum C_{{\scriptscriptstyle M.Ci}}$

Затраты на проведение 1 м выработки по эксплуатации забойных машин и механизмов определяется по формулам:

при БВР

$$C_{M.c.} = 1.05 \cdot \frac{\sum C_{M.c._i}}{l_{sax}}, \text{ py6/m};$$
 (9.11)

при комбайновой технологии

$$C_{M.c.} = 1,05 \cdot \frac{\sum C_{M.c._i}}{V_{CM}}, \text{ py6/M}.$$
 (9.12)

Затем определяются затраты на проведение 1 м выработки по общешахтным расходам:

$$C_{o.\text{III.}} = K_{o.\text{III.}} \cdot C_{\text{пн}}, \text{ py6/M},$$
 (9.13)

где $K_{o.ш.}$ - коэффициент, учитывающий общешахтные расходы, 0,5-0,8.

Далее определяются затраты на проведение 1 м выработки по накладным расходам:

$$C_{\text{H.p.}} = 0.273 \cdot (C_{\text{п.н}} + C_{\text{о.ш.}}), \text{ py6./m.}$$
 (9.14)

Полные затраты на проведение 1 м выработки с учетом плановых накоплений определяются по формуле:

$$C_{\text{пол}} = K_{\text{пл}} \cdot (C_{\text{п.н.}} + C_{\text{о.ш.}} + C_{\text{н.р.}}), \text{ pyб/м},$$
 (9.15)

где K_{nn} – коэффициент плановых накоплений, 1,06-1,15.

Затраты на проведение всей выработки:

$$C_{\text{выр}} = C_{\text{пол}} \cdot L_{\text{выр}}$$
 руб. (9.16)

Продолжительность проведения выработки:

$$T_{\text{выр}} = L_{\text{выр}} / V_{\text{мес}}, \text{ мес}, \tag{9.17}$$

где $V_{\text{мес}}$ – месячная скорость проведения выработки, м/мес.

Пример

Расчет затрат произведен на проведение штрека по буровзрывной технологии для условий, перечисленных в ПЗ №3, №7 и №8.

Тарифная ставка проходчика 5-го разряда $T_5 = 800$ руб.

$$C_{3} = 800 \cdot \frac{12,17}{2} = 4868 \text{ py6/m}.$$

Расчет $\sum C_{M_i}$ ведем в табл.9.3.

Таблица 9.3 - Расчет $\sum C_{\scriptscriptstyle M_i}$ на цикл

Материал		КИ	'nΖ	цы уб	o 0
	Расход на цикл	Процент использования	Фактический расход	Цена единицы материала, руб	Суммарные затраты, руб
1. Крепь из СВП-19, т	$2 \cdot 0,826 \cdot \frac{19}{33} = 0,95$	100%	0,95	24000,00	22800
2. Затяжка ж/б, м ³	$2 \cdot (0,29+0,20) = 0,98$	100%	0,98	5900,00	5782
3. Электродетонаторы ЭДКЗ-ПМ шт	10+52=62	100%	62	78,00	4836
4. Аммонит Ф5, т	0,052	100%	0,052	108000,00	5616
5. Угленит 13П, т	0,012	100%	0,012	126000,00	1512
6. Рельсы Р33, т	2·2·0,033=0,132	100%	0,132	18000,00	2376
7. Ж/б шпала на колею 900 мм, шт	$\frac{2}{0.7}$ = 2,86	100%	2,86	160,00	457,60
8. Ж/б крепь водосточной канавки, м	2,0	100%	2,0	100,00	200,00

Итого: $\sum C_{M_i} = 43569,60$ руб.

Затраты на проведение 1 м выработки по материалам при БВР (по ф. 9.9) равны:

$$C_{M} = 1,05 \cdot \frac{43569,60}{2} = 22879,29 \text{ py6/m}.$$

Расчет затрат на 1 м проведения выработки по эксплуатации машин и механизмов на цикл произведен в табл.9.4.

Затраты на проведение 1 м выработки по эксплуатации машин и механизмов при БВР (по ф. 9.11) равны:

$$C_{\text{\tiny M.C.}} = 1,05 \cdot \frac{10714,80}{2} = 5625,27 \text{ py6/m}.$$

Таблица 9.4 - Затраты по эксплуатации машин и механизмов на цикл

Машины и	Кол-во	Время	Общий	Полная	Суммарные
механизмы	машин	исполь-	расход	цена	затраты,
	и меха-	зования,	машино-	машино-	руб
	низмов	Ч	смен на цикл	смены, руб	
1. Ручные электросвёрла	3	0,38	$3 \cdot \frac{0.38}{6} = 0.19$	1440,00	273,60
2. Навесное бурильное оборудование 2БА	1	1,13	$\frac{1,13}{6} = 0,19$	8640,00	1641,60
3. Погрузочная машина ПНБ-3Д	1	0,32+1,1	$\frac{1,42}{6} = 0,24$	18540,00	4449,60
4. Конвейер 1ЛТ-80	1	1,42	$\frac{1,42}{6} = 0,24$	9000,00	2160,00
5. Вентилятор осевой	1	6,0	$\frac{6,0}{6} = 1,0$	2190,00	2190,00

Итого: $\sum C_{M.C._i} = 10714,80$ руб.

Затраты на проведение 1 м выработки по прямым нормируемым расходам (по ф. 9.7) равны:

$$C_{\text{\tiny II.H}} = 4868,00 + 22879,29 + 5625,27 = 33\ 372,56\ \text{py6/m}.$$

Затраты на проведение 1 м выработки по общешахтным расходам (ф. 9.13) равны:

$$C_{o.iii.} = 0.7 \cdot 33372,56 = 23360,79 \text{ py6/m}.$$

Накладные расходы определяются по формуле (9.14):

$$C_{\text{H.p.}} = 0,273 \cdot (33372,56 + 23360,79) = 15488,21 \text{ py6/m}.$$

Полные затраты на проведение 1 м выработки с учетом плановых накоплений определяются по формуле (9.15):

$$C_{\text{пол}} = 1,1 \cdot (33372,56 + 23360,79 + 15488,21) = 79443,71 \text{ py6/m}.$$

Затраты на проведение всей выработки равны (ф. 9.16):

$$C_{\text{выр}} = 79443,71 \cdot 540 = 42899604,92$$
 руб.

Продолжительность проведения выработки составит (ф. 9.17):

$$T_{\text{выр}} = \frac{540}{150} = 3,6 \text{ Mec.}$$

ПЗ №9**: Изучение технологии строительства выработок в трудных горно-геологических условиях

Цель занятия — изучение основ расчета толщины ледопородного ограждения.

Расположение и бурение замораживающих скважин

Замораживающие скважины размещают вокруг ствола по окружности, диаметр которой D_{CK} следует принимать с учетом диаметра ствола в проходке, толщины стены ледопородного ограждения, а также возможной допустимой величины отклонений оси скважин от вертикали:

$$D_{ck} = D_{np} + 1, 2 \cdot E + k \cdot H_{ck}, \qquad (9**.1)$$

где D_{np} — диаметр ствола в проходке, м;

E — толщина стенки ледопородного ограждения, м;

k — допустимое отклонение оси скважины от вертикали, %;

 $H_{c\kappa}$ — глубина замораживающей скважины, м.

Коэффициент 1,2 в формулу вводится потому, что при замораживании пород вокруг колонок холод распределяется неравномерно: в направлении к центру ствола — примерно 60%, к периферии — 40%. Поэтому окружность, по которой располагают замораживающие скважины, устанавливают со смещением от середины на 0,1.

Толщину стены E ледопородного ограждения определяют по формуле Лямэ-Гадолина. При этом ледопородное ограждение рассматривают как жесткоупругий правильной формы толстостенный цилиндр неограниченной длины, подвергающийся сжатию под действием равномерно распределенной нагрузки. Формула Лямэ-Гадолина имеет вид:

$$E = R_{\scriptscriptstyle g} \cdot \left(\sqrt{\frac{\left| \sigma_{\scriptscriptstyle C \mathcal{H}} \right|}{\left| \sigma_{\scriptscriptstyle C \mathcal{H}} \right| - 2 \cdot p_{\scriptscriptstyle H}}} - 1 \right), \tag{9**.2}$$

где R_B - внутренний радиус цилиндра ледопородного ограждения, принимаемый равным радиусу шахтного ствола вчерне, см;

 $|\sigma_{\scriptscriptstyle c\! ,\! n\! c}|$ - допускаемое сопротивление замороженных пород сжатию, МПа;

 $p_{\scriptscriptstyle H}$ - наибольшая величина внешней нагрузки на ледопородное ограждение, МПа.

ЛИТЕРАТУРА

- 1. Шахтное и подземное строительство. Технология строительства горных выработок: Учеб. пособие/ В.А. Ткачев, А.Ю. Прокопов, Е.В. Кочетов. Шахтинский ин-т ЮРГТУ. Новочеркасск: ЮРГТУ (НПИ), 2008. 244 с.
- 2. Пилипец В.И. Разрушение горных пород взрывом: учебное пособие для студентов горных специальностей вызов. Изд. 2-е, перераб. и доп. Донецк: Новый мир, 2014. 352 с.
- 3. Правила безопасности в угольных шахтах (утверждены совместным приказом Государственного Комитета горного и технического надзора ДНР и Министерства угля и энергетики ДНР от 18 апреля 2016 г. № 36/208). Донецк, 2016. 164 с.
- 4. Альбом оборудования для строительства горизонтальных и наклонных выработок. Часть І: Технические средства для буровзрывных работ : учебное пособие / А.Н. Шкуматов. Донецк: ДонНТУ, 2012. 86 с.
- 5. Методические указания к организации самостоятельной работы студентов и выполнению контрольной работы по дисциплинам «Сооружение горизонтальных и наклонных выработок», «Основы горного дела. Строительная геотехнология», «Геотехнология. Строительная» (для студентов специальности 21.05.04 «Горное дело» специализаций «Шахтное и подземное строительство», «Обогащение полезных ископаемых», «Горные машины и оборудование» всех форм обучения) / сост. А.Н. Шкуматов. Донецк: ДОННТУ, 2017. 48 с.
- 6. Методические указания к выполнению курсового проекта по курсу «Технология строительства горных выработок» / сост.: С.В. Борщевский, В.Ф. Формос. Донецк: ДОННТУ, 2013. 54 с.
- 7. УТП 101.00.174131.002-2004. Уніфіковані типові перетини гірничих виробок, закріплених комбінованим арочним кріпленням із взаємозамінного шахтного профілю. Альбом. К., 2004. 169 с.
- 8. Сборник Е36: Единые нормы и расценки. Горнопроходческие работы. М.: Стройиздат, 1988. Вып.1.- 206 с.

Учебное издание

Методические указания к практическим занятиям по дисциплинам «Сооружение горизонтальных и наклонных выработок», «Основы горного дела. Строительная геотехнология», «Геотехнология. Строительная» (для студентов высших учебных заведений всех форм обучения специальности 21.05.04 «Горное дело» специализаций «Шахтное и подземное строительство», «Взрывное дело», «Подземная разработка пластовых месторождений», «Технологическая безопасность и горноспасательное дело», «Обогащение полезных ископаемых», «Горные машины и оборудование» и «Маркшейдерское дело»)

Составители: Шкуматов Александр Николаевич Формос Валерий Федорович