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Abstract 
 

This paper considers the parallel simulation of dynamic systems with lumped parameters, where 
continuous controlled processes are described by ordinary differential equations, and dynamic systems 
with distributed parameters, where processes are described by partial differential equations. The concept 
of massive parallel simulation environment with integration of hardware, system software and 
simulation software which supports all stages of model constructing and simulation is presented. Some 
parallel algorithms and examples of simulation are described. 
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1. Characteristic of dynamic systems and requirements to their simulation facilities 

Dynamic systems (DS) are a wide class of objects of technics and technology where 
continuous controlled processes exist. The process dynamics and frequency characteristics 
exert the determinative influence upon the design of control systems of dynamic objects. For 
objects of real complexity simulation is the most effective and frequently used method of 
checking project solutions efficiency. Classifying dynamic systems as simulated object two 
most important types of systems can be distinguished: these are dynamic systems with lumped 
parameters (DSLP) and dynamic systems with distributed parameters (DSDP). 

DSLP are systems described by ordinary differential equations (ODE), algebraic equations 
(AE) and logical functions (LF). ODE characterise the progress of the processes, AE express 
the physical interconnections between their parameters and LF can reflect structure variables 
and interrelations between parameters which are essential for the control of DSLP. Real DSLP 
are multidimensional (hundreds or thousands of dynamic parameters) and characterised by the 
following parameters: non-linear static characteristics, hierarchy of controlling influences and 
sources of energy, strong interdependence of the process parameters. In some domains these 
systems have variable of structure dependant on time or process parameters. 

DSDP are systems described by partial differential equations (PDE) with corresponding 
boundary conditions, as well as by ODE, AE and LF. DSLP and DSDP function like complete 



systems in many domains. In practical researches and design of dynamic systems objects with 
distributed parameters can be approximated by the equivalent objects with lumped parameters.  

Formal description of real complexity dynamic systems consist of a topology part and a 
system of equations. DSLP topology is depicted by graphs (dynamic network objects of 
different physical nature), technological schemes, block diagrams (control systems of dynamic 
objects). DSDP topology can be similar to DSLP topology and some of its components (graph 
branches, blocks of technological schemes and block diagrams) are objects with distributed 
parameters of a simple geometrical form, e.g. one-dimensional (pipelines, long lines), two-
dimensional (filter surface), three-dimensional (reactors, power facilities). The approximation 
of continuous environments and their discretization by equivalent analogies generate DSDP 
topology.  

The requirements to dynamic system simulation facilities are as follows [2, 3, 4]: 
1. User-friendliness at all stages of design and application of DS models so that user can 

concentrate upon a simulation problem. 
2. The ability to simulate DSLP and DSDP of real complexity with maximum regard to real 

properties of simulated processes. 
3. The ability to solve simulation problems of DS in real or accelerated time rate. 
4. The presence of high level simulation language. It is very important to have the 

possibility of model description using minimum amount of information. The 
presence of dialogue system supporting active user access to resources of the 
simulation facilities at all stages of design and use of models. 

5. The ability to simulate DS with continuous structure. 
6. Modern system organisation: simulation facilities should be accessible for many users via 

network. Therefore users of different domains should have ability to realise model 
properties in the best possible way. 

7. Using modern facilities of storage, visualisation, documenting, archiving and reuse of 
models. 

8. The ability of integration with computer-aided design systems (CAD, CASE). 
9. Highly developed model testing system. 
10.The presence of interactive facilities of user training, which allows to study simulation 

methods of complex systems in a short space time. 

2. Massive parallel  simulation environment: definition and structure organisation 

Massive parallel simulation environment (MPSE) for dynamic systems is a combination of 
hardware, system software and simulation software, which supports all stages of model 
building and simulation and meets the above requirements. 

The hardware includes parallel systems of SIMD and MIMD architectures accessed by users 
via network. The system software consists of operating systems, parallel program languages 
and their translators, network software intended to support remote users, organising input-
output and solving real time problems. These components are available in the existing SIMD 
and MIMD systems. The parallel program languages Parallaxis and Modula-P were designed at 
IPVR [5,6].  

The simulation software included in the MPSE should be developed by means of the 
existing software and based on the experience of creation of simulation environments [2,4]. It 
should include the DSLP and DSDP parallel simulation software, the library of parallel 
algorithms and the programs of numerical methods, software for supporting the flexible access 
to all the facilities mentioned above and visualisation of simulation results. 
 



The simulation software structure for DSLP and DSDP is shown in Fig. 1. The main part 
consists of programs realising parallel numerical algorithms of solving ordinary and partial 
deferential equation systems, which require a great number calculations. During DSDP design 
it is expedient to base on the generally used classification of  PDE. 
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Fig. 1. Structure of simulation software for DSCP and DSDP  
 

3. Multiprocessor systems and parallel algorithms 

The difficulty of using multiprocessor systems consists not only in the limitation of 
processor interconnections. High performance can be achieved only when all processors or 
most of them are continuously loaded. But the algorithm of problem solving due to its own 
structure can support but frequently not the continuous load of large amount of processors 
despite of interconnection network structure. There are many calculation methods, which can 
not be effectively realised for whatever multiprocessor computer system. Hence, the structure 
of calculation methods should correspond to the computer system architecture. Otherwise, the 
required performance might not be achieved. 

Below the SIMD-oriented algorithms, which can use more completely the potential 
parallelism difference schemes posses, are described which approximate boundary problems for 
partial differential equation. The highest performance of a SIMD parallel processor is achieved 
when it is used in matrix calculations. As is known, many algorithms require the same 
operations which are often repeated. If it is possible to assign one calculation node to one 
processor then all nodes can be calculated concurrently. 



The efficiency of a parallel algorithm can be estimated by means of many criteria. The most 
popular criteria are acceleration and performance. Let n be the quantity of the problem 
parameters and Tp(n) be the calculation time of the parallel algorithm using a parallel computer, 
which consists of p>1 processors and T1(n) be the calculation time of “the best” sequential 
algorithm. Then  
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denotes the performance of a parallel algorithm. One of the aims of the parallel algorithm  
development is to achieve the maximum acceleration (Sp=p). However, the maximum 
acceleration can be achieved only for simple problems. The main factors decreasing the 
acceleration are the absence of maximum parallelism in the algorithm and time wasting for data 
exchange between processors. Beginning to discuss numerical algorithms for solving the 
problems of mathematical physics they will be estimated taking into account the two factors 
mentioned above. Firstly, the algorithms with maximum parallelism are discussed, then time 
wasting for data exchange is estimated for SIMD realisation on MasPar-1216 system. 

 

4. Algorithms for solving boundary problems of parabolic equations 

4.1. Algorithms for numerical solving of one-dimensional boundary problems 

 
The numerical solution of a one-dimensional parabolic problem 
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using the explicit scheme is expressed by the following equations which allow to get the 

solution sequentially for the next time level 
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2 2 2      , , / ; , are steps of the grid. Obviously, this 

algorithm has maximum parallelism at each time level: SN(N) = N. And it is easy to realise on 
SIMD processors because the algorithm requires only two data exchanges, which are 
accomplished between two neighbour processor elements, at each time level,. To realise this 
algorithm N processors are required. Its performance takes into account the dependence upon 
the calculation of complexity of functions f, ,  and equals EN(N)=0.75 at worst for 
homogeneous equations and homogeneous conditions. However, the application of this 



algorithm is restricted by the fact that explicit difference scheme is unalterable only when 
  a h2 2/ .  

Approximation of problem (3) by the implicit scheme is expressed in the following equation 
system 
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Using sequential computers this problem is solved by Progonka method which is not 

parallel, thus it is not efficient to realise on parallel computers. There are some effective 
parallel algorithms of solving three-diagonal linear equation systems. One of them is briefly 
discussed below. 

Omitting for short the superscript indexes in (5), assuming for convenience N-1=2q  and 
denoting the right part with  n n, ,  n ,  gn,  the following formulae can be written: 
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If unknowns vn-1 and vn+1 are excluded and three neighbours are grouped again then we 

obtain 
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In  (7) it should be assumed, that vj=0 for all j<0 and j>N+1 in order to be able to exclude 

the unknown variables simultaneously in each group. It is obvious, that the process can go on 
recursively until each equation consists of one variable only after q= log2(N-1) steps. At the 
last (q+1)-th step all unknown variables can be found concurrently too. 

The described method of cyclic reduction was previously used on sequential computers, 
since it has less amount of scalar arithmetical operations and, hence, it is the best sequential 
algorithm. If the factors of equations (7) are calculated at each step concurrently at N-1 
processors of a SIMD-system, and then their values are sent to the appropriate processors, 
then  the solution of  the equation system (6) will require q + 1 step. At each step, except for 
the last one, each processor should send four values. We shall designate as tf the  quantity of 
operations of factors required for the calculation of the system (7) on a sequential computer, as 
tu the time of the parallel exchange in a SIMD-structure, as tg the time of the calculation of 
unknown xi from the equation similar to (7), which is obtained at the first step in the method of 
sequential cyclic reduction (SERICR), then the acceleration of the parallel  cyclic  reduction 
algorithm (PARACR) will be equal to 
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If  tu denotes the average time necessary for one arithmetic operation, then the algorithm 

efficiency equals E N NN ( ) (log ) 
2

1  for the problem under consideration (6). 

4.2. Concurrent solution algorithms of multidimensional parabolic boundary problems 

Explicit and implicit methods are usually used for solving multidimensional parabolic 
boundary problems. Explicit difference schemes for multidimensional parabolic problems, as in 
the case of one-dimensional problem, have maximum possible natural parallelism. However, 
because of conditional stability of such difference schemes, their use is not always  possible. At 
present, there are no efficient parallel direct methods of solving implicit difference equation 
systems. 

Difference schemes of splitting offer a means of parallelizing. For example, for the two-
dimensional parabolic problem 
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with appropriate initial and boundary conditions local one-dimensional scheme of splitting is 

of the following form 
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Here the solution at each time level consists of two stages: finding intermediate values ~

,vm n , 

and then calculating values vm,n
k1  at the next time level. At each of these stages difference 

equations are three diagonal systems of equations, which, as in the case of one-dimensional 
problem, can be solved by the cyclic reduction method. If for simplification of estimations it is 
assumed, that x, y area for the problem (9) is a square, then the parallelism degree of this 
algorithm being equal to N2 the PARACR method is the most efficient. The acceleration of this 
method is 
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If only N processors are used, then each equation system can be solved by the PARACR 

method, using N processors, and then N such systems can be solved sequentially, or each 
system is solved on one processor by the SERICR method, and all N systems are solved 
concurrently, then the acceleration estimation is as follows 

                   S N O N N S N O NN paracr N sericr( ) / log ; ( ) ( ),2
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These estimations testify to advantages of the SERICR method. Similar evaluations are also 
obtained for other difference schemes of splitting. In the same way it is possible to consider 
and get estimations for the space parabolic equation. 

 

4.3. Concurrent solution algorithms of  elliptic boundary problems 

The parallelism estimations of algorithms are done for a model problem, approximating 
Poisson’s  equation  
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the corresponding difference equation of which is of the following form 
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If the first boundary problem is solved, then function u and, hence, grid function v are 

defined at the boundary. Thus, a linear system of N2 equations is obtained, the matrix of which 
is diagonally rarefied and contains only five non-zero diagonals. At present, there are no 
efficient direct methods of solving similar systems of equations. For large values of N such 
systems are solved by iterative methods, as a rule. The analysis of the solution algorithms of 
difference equations, allows to answer the following questions: 

 performance and possibilities of parallelizing; 
 estimation of parallel algorithms given the characteristic correlation between the number 

of unknowns and the number of processor elements (PE). 
 
Proceeding from the obtained estimations of efficiency of parallel algorithms we have 

chosen the following parallel algorithms for realisation on SIMD system MasPar: parallel 
method of upper relaxation, method of variable directions and multigrid Fedorenko method. 
The first two methods are well known in contrast to the third one, therefore we shall present a 
brief description of this method. To reduce the norm of the initial error lnN times this method 
needs O(N2) arithmetical operations. It is known, that the fastest method of Duglas-Rechford 
requires O((lnN)N2) operations. Limits of applicability of multigrid method are almost the 
same, as of the elementary method of establishment. The multigrid method was intended for 
application at a one-processor computer, where nodes of the grid area are processed 
sequentially. At the same time it is easy to parallelize and it is effective to realise on SIMD 
systems. Its implementation is especially simple for the case, when the number of PE is 
sufficient for processing of all nodes of a small-sized grid,  i.e. p=N2. When p < N2 it is not 
difficult to construct a block sequential-parallel algorithm on a small-sized grid and a parallel 
algorithm on a large grid. 

The multigrid method can be modified for the realisation on SIMD systems. For 
simplification we shall restrict ourselves to the case, when two grids are used – a small one and 
a large one. When calculating corrections in nodes of the large grid, it is also possible to 
calculate corrections in other internal nodes of the small grid, using the pattern of the large grid 
except for boundary nodes. The values of corrections in boundary nodes can be determined by 
interpolation. Besides, more accurate initial approximation for the small grid can be obtained, 



using approximate solutions on a sequence of condensing grids. These changes of the 
algorithm allow to reduce the total number of parallel iterations, which are necessary for 
solving a problem with given accuracy, as well as to increase the degree of parallelism. 

4.4. Library of  programs for parallel simulation of DSDP 

 
The library includes procedures of all the above considered numerical methods, as well as 

various auxiliary programs. For example, problem correctness checking, scanning the area, 
where the solution is being found, input/output procedures, interpreter of symbolic expressions 
for input of functions and others. The library allows to carry out the numerical solution of two-
dimensional parabolic and elliptic boundary problems in the area, representing closed 
multiangles, parts of border of which being segments of straight lines and arches of circles. The 
boundary conditions in each section of the border are set in the form of conditions of the third 
kind. Both rather simple methods (such as Jacoby’s method, Seidel’s method, method of upper 
relaxation) and complex methods (multigrid, extrapolation, as well as Schwarz’ method and 
area partition. The programs are made in parallel programming language Parallaxis-3 for 
operating system Linux, some auxiliary procedures are written in C ++. 

 

5. Massive parallel models of dynamic net objects 

 
Dynamic net objects (DNO) are widely known in different fields of engineering [1].  When 

designing control systems of network objects of real complexity there are problems of 
checking the correctness of design solutions, which can be resolved only by methods of 
mathematical simulation. DNO models present a number of rigid requirements to means of 
computer facilities, which can be satisfied only by parallel computer systems. The report 
considers the algorithms of massive parallel models of DNO construction and the results of 
their realisation in the structure of simulation facilities. 

 
5.1. DNO  topology and algorithm of topological part of models definition 
 
The DNO topology is characterised by a strongly connected graph G(u,v) where u=n is a 

number of nodes and v=m is a number of branches. In real DNO m exceeds 200 and n exceeds 
100. Therefore, the task of formal definition of DNO consists in the development of 
specification language, which contains minimum initial information in terms and means of 
representation, and which is clear to the user of a subject area. Graph G(u,v) is specified by the 
table of the following type 

 
Aj, Ek, Qi, (par-i), (kom-i),        (15) 

 
where Qi is a physical flow (current in the electrical net, gas or air expenditure in 

aerogasdynamic nets, water expenditure in hydraulic nets, etc.) in the i-th branch of the graph; 
Aj, Ek  are numbers of the first and the last node of the branch.  

Indexes j, k ª (1,2,...,n); (par-i) is an array of i-branch parameters; (kom-i) is verbal 
definition of the comment for i-branch. 

 



The table (15) is prepared by the user of a subject area in a dialogue mode, corresponding 
to the format of a given simulation environment. Columns Aj, Ek, Qi (table 15) are used for 
construction of topological incidence matrixes   

 
A=Fa(Aj, Ek, Qi),          (16) 

 
and contour matrixes 
 

S=Fs(Aj, Ek, Qi),           (17)  
 

required for the automatic formation of DNO equations. Here Fa, Fs  are algorithms of 
matrix formation. Let us introduce the following operations for variables Aj, Ek.  

Assignment  
Aj:=Ek ( j=k ),          (18) 

 
corresponds to the transition from the column of end nodes to the column of beginning 

nodes, realised during the analysis of rows of the table (15), i.e. interrelation of branches of 
incidental nodes j=k.  

Logical operation  
 

L[Ep ª(Aj, Ep-1, Ep, Ep+1)],       (19) 
 
determines, whether node Ep belongs to the set of beginning and end nodes.  
A table algorithm of constructing graph G(u,v) tree (antitree), being the modification of 

known consecutive algorithms, is proposed. The idea of the algorithm is that the initial table of 
the graph  

 
TABUR=(Aj, Ek, Qi),           (20) 

 
is transformed at some stages to the final tables of the tree BAUMTAB and antitree 

ANTIBAUTAB: 
 
   1) Analysing rows of table TABUR, corresponding to parallel branches: 
 

Aj(Qi)=Aj(Qp);       
Ek(Qi)=Ek(Qp);       

Qp<>Qi            (21) 
 

According to the results of analysis the TABOP table is formed. The table differs from 
TABUR in the absence of parallel branches, having the same end nodes and beginning nodes. 
From the rows "reseted" during the transformation of TABUR to TABOP, ANTIBAUTAB is 
formed to be appended at the further stages.  

 
   2) From TABOP table the current table of a tree BAUTAB-d and current array of nodes 

KNOAR-d are obtained (d is an index, taking on the values of 1,2,... D, where D is the number 
of steps of the transformation of TABOP table to the final table BAUMTAB). The end nodes 
and beginning nodes of the tree are placed into the table KNOAR-d. The beginning nodes, 



which are entered as end nodes in BUAMTAB-d, are determined by the operation (18). 
Operation (19) checks which end nodes Ek are already entered in the array KNOAR-d.  

 
If  L[Ek ª (KNOAR-d)]=TRUE, 
then ANTIBAUTAB is extended by adding a row, containing Ek.  
Array KNOAR-d and table BAUMTAB-d remain unchanged.  
 
If  L[Ek ª (KNOAR-d)]=FALSE, 
then KNOAR-d and table BAUMTAB-d are extended.  
 
3) Checking the condition of finishing the process of a tree construction by the formula 
 

BF=(BZ=n-1) AND (ABZ=m-n+1) AND (MOD KNOAR-d=n)    (22) 
 
where BF is a logical variable "tree is complete"; 
BZ is a number of rows (tree branches) in BAUMTAB-d table; 
ABZ is a number of rows (antitree branches) in ANTIBAUTAB-d table; 
MOD KNOAR-d is a number of nodes in KNOAR-d array. 
 
By condition BF=TRUE the search cycle is finished and the visual table construction is 

performed. To generate an incidence matrix, table TABXY is formed from the tables of tree 
and antitree. Components of the table TABXY are ordered in conformity with the identifiers of 
branches of a tree Xi and antitree Yj (i=1,2,...,n-1;  j=1,2,...m-n+1). The following algorithm 
of generating a matrix table A=(AxAy),(TABA) is proposed. 

Identifier KNO( j ) with j =1,2,...n, corresponding to the row number in TABA and in 
matrix A, is compared by columns to the parameter of beginning nodes and end nodes A(k), 
E(k), k=1,2,...m.  

By the results of comparison an array of rows Za( j ) is formed in the following form: 
 

ZA( j )=(x1-x20...xn-2xn-1-y10...ys-1,ys)          (23) 
 
Rows of submatrixes AX, AY and matrix A (AX, AY) are formed from ZA(i). From the  

table TABXY a matrix of contours is formed in the form of S= (SX, SY) by the following 
algorithm: 

 
   1) From TABY, ABZ=m-n+1 of the contours' headers is formed in the form of 
 

M( j ):=(Ak(Yj)Ek(Yj))Yj     (24) 
 
   2) Using operation (18) the base of contour M(j) searches for branches, which belong to 

this contour. As the result there is a table of j-contour, which is transformed into the 
intermediate vector MS(j,k), the elements of which are the components of vectors X,Y and 
zeros. 

 
   3) From the vector MS( j, k) elements of submatrixes SX, SY and matrix S(SX, SY) are 

determined. 
 
 
5.2. Generation and solution of equations of DNO with lumped parameters  



 
   Dynamic processes in the branches of net objects with lumped parameters (DNO-LP) are 

defined by ordinary differential-integral equations concerning material flows (current in the 
electrical net, gas or air expenditure in aerogasdynamic nets, water expenditure in hydraulic 
nets, etc.). The generalised system of equations for objects includes equations of continuity in 
nodes  

 
AQ=0,       (25) 

 
and equation of movement in closed contours 
 

 SK
dt

+ SR(t)f(Q)+  SB(t) (Q)dt =  SH(Q)dQ
    (26) 

 
where Q is a vector of current of some physical nature; 
K, R(t), B(t) are diagonal matrixes of parameters, characterising branch sluggishness, 

resistance to movement of a flow, capacitor properties;  
f(Q), (Q) are vectors with non-linear elements, characterising physical properties of flows 

in branches; 
H(Q) is a vector of characteristics of active DNO elements (generators, turbo-compressors, 

etc.). 
 
Using the above obtained A(AX,AY), S(SX,SY), Q(XY), K(KX,KY), R(RX,RY), 

B(BX,BY), H(HX,HY) let us present the system in the form convenient for numerical 
solution: 

 
X= -WY      (27) 

dY
dt

 =  S H(HX,HY) - S R(t)f(x, y) - S B(t) (x, y)dtn n n    (28) 

 
where  W, S n  - matrixes, calculated in the topological part of parallel DNO models [2]. 
 
The system (27), (28) is solved by the numerical method, algorithm of which is realised in 

the language of parallel programming. 
 
Languages of parallel DNO simulation of block-oriented, equation-oriented and problem-

oriented types are developed on the basis of algorithms of construction of A, S  and formation 
of equations in the form (27), (28). 

 
 
5.3. Generation and solution of equations of DNO with distributed parameters 
 
The dynamic processes in branches of network objects with distributed parameters are 

described by partial differential equations of various types. We shall consider a class of 
network objects, to which electrical, hydraulic and other networks belong. The branch of DNO 
can be assumed to be one-dimensional by the co-ordinate x, counted along branches from 
beginning and end nodes. Any of X or Y branches are described by the equation of movement 
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where k, r, b are specific parameters, characterising the sluggishness, resistance and 

capacitor properties of the process; 
x (or y) are currents in branches of tree and antitree  of DNO graph; 
P (PX and PY respectively) is a parameter which characterises the distribution of driving 

forces (voltage, pressure, etc.). 
 
The boundary conditions for equations (29), (30) are the values of functions P(x,t) in the 

beginning and end nodes of the branches. These functions are the required variables in the 
equation system of the net, which consists of m pairs of equations in the form of (29), (30). 

 
Approximating the system (29), (30) by the method of straight lines, receiving M pairs of 

ordinal differential equations for each branch in a kind  
 

 dX
dt

=  (P - P  ) -  ik
xi ik -1 ik  xi ikf X( )      

 
dP
dt

=  (X - X )ik
xi ik ik+1      (31) 

 
where  
i is a number of X-branch; 
k is a number of elementary site of branch with length Dx; 
xi , xi , xi - factors. 
 
With K conterminous with boundary node the equation of continuity acquires the following 

form  
 

  
dP
dt

=  ( X - Y )uj
uj uj        (32) 

 
In the stabled mode equations (32) for all nodes of the net (j=1,2,...,n-1) are transformed 

into the system (27). Entering the vector of boundary (node) values for the whole net 
 

Pu=(Pu1,Pu2,...,Pun),   
 
diagonal parameter matrix G(u1, u2,...,un), vectors of currents Xu, Yu incidental to the 

nodes, we obtain a matrix system of equations: 
 

 dP
dt

=  G( A XU + A YU),u
x y      (33) 



 
determining boundary conditions for branches. The system (31) for X- and Y- branches is 

easily represented in matrix form. 
 
When developing a parallel SIMD-model, there are two methods of solving the equation 

system (31), (33): 
 

 co-ordinate method, in which a net with discrete branches is imposed on a grid of 
processors of type (grid [ LM ], [ LK ], where LM is a total quantity of approximating 
elements by maximum contour; LK is a number of processor branches corresponding to the 
number of base branches of antitree, graph, net. 

  
 the method of approximated branches, in which each approximated branch is assigned 

to a pair chain of processor elements, and connections between them are constructed 
according to the equation (33). 
 
In both cases the systems (31), (33) are solved numerically by a parallel algorithm. 
 

6. Parallel simulation of optimum systems expressed by equations of network 
 objects 

 
The complex topological network object under consideration is the mine ventilation system, 

which distributes air among consumers with the purpose of decreasing to a safe level the 
concentration of harmful industrial gases in the atmosphere. 

 
To establish a safe concentration of harmful gases, when their emission has boundary 

frequency of the order of  0.05 s-1, the optimum regulation of air distribution should provide a 
law of establishment of the required flow rates both in character, and in duration of transition. 
For technological reasons it is rather important, that the transition has non-periodic character, 
even in the presence of harmonic containing finite number of fluctuations. 

The transport movement in an uncontrolled network causes essential high-frequency 
fluctuations of resistance of the network branches and according to the flow rate with 
boundary circular frequency  = 0.2 - 0.3 s-1. Effective indemnification of these fast changes is 
the major dynamic problem of a system, regulating the air distribution in a network object. 

At the preliminary stage of the development of a network object control system we carry 
out the synthesis of a control system, which is optimum in quality for a separate branch of the 
network. Qualitative characteristics of a network object control system as a whole are  
analysed with the application of a parallel mathematical model. 

In general, aerodynamic processes in a separate branch of a network object are described by 
non-linear telegraphic equations: 
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Here H is a pressure along the axis of a branch; G - air flow rate; b - air density; a - speed 

of a sound in the air; Fb - section of a branch; R - specific resistance of a branch; x - distance of 
the given point from the beginning of a branch.  

 
The equations (34) and (35) describe dynamics of a branch in an unlimited  range of 

frequencies up to  = . In the limited interval under consideration of the working frequencies 
of the order 0.5 s-1 more simple models of dynamics of a branch as a controlled object can be 
used for the control system synthesis. Linear system of telegraphic equations is considered for 
the synthesis of an approximate model of aerodynamic processes in a network branch: 
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where r = 2RGH - differential specific resistance of a branch in the vicinity of a stationary 

nominal mode G = GH;   
Q(x,t) = [G(x,t) - GH] - deviation of the air flow rate from nominal mode; 
P(x,t) = [H(x,t) - HH(x)] - deviation of pressure from nominal pressure HH(x) in stationary 

mode;  
HH(x) = [HK

H + RGH
2(lb-x)] - pressure distribution along a branch at nominal flow rate; 

lb - length of a branch. 
According to (36) and (37) the resistance of a branch in the final section (at the end of a 

branch) is defined by the expression 
 W s P s Q s thK( ) ( ) / ( ) ( / ),     2    (38) 
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Approximating (34) and (35) by the method of straight lines and expanding function (38) in 
a Taylor series for branches of real networks in the essential range of frequencies in the 
presence of square-law resistance the following models of a branch as an object under control 
can be obtained: 

Ki(p)G + RsG2 = H0 .      (39) 
 

Here Rs = (Rb+ Rc)  is a total resistance of a controlled branch; Rb = Rlb is a resistance of a 
branch; Rc is a controlled resistance of a pressure-differential device; H0 is a general 
depression of an autocontrolled branch; Ki(p) = K1(p), K2(p), K3(p) are factors of inertia for 
models of aerodynamics in a branch of the third, second and first orders, respectively; 
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Rg
H  - nominal resistance of a pressure-differential device; 
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It is shown, that the equations of the third, second and first orders describe adequately the 

dynamics of branches with the length of 2000, 600 and 300 meters respectively in the range 
under consideration of essential control frequencies of the order of  0.5 s-1 of. The adequacy of 
the models is justified by the high degree of convergence of the frequency characteristics of 
simplified models and of the corresponding gear function (38). In the time interval a chained 
line of elements with four poles was used as a reference model for the accuracy evaluation of 
approximate models. Control processes optimum in quality in autocontrolled branches were 
designed with the help of equation (38) 

 
A0

i(p)G = G0(t),      (40) 
 

where G0(t) is a given debit of air in a branch under control; G is a current flow rate of a 
branch;  

A0
i(p) = A0

3(p), A0
2(p), A0

1(p) are the optimum operator of the characteristic equation of 
transitions in branches of the third, second and first orders, respectively;  

A0
3(p) = (a3

0p3+a2
0p2+a1

0p+1); 
A0

2(p) = (e2
0p2+e1

0p+1); 
A0

1(p) = Tb
0+1; 

a3
0, a2

0, a1
0, e2

0, e1
0, Tb

0 are optimum constant factors of the characteristic equation for 
branches of appropriate length. 

For the maintenance of natural adaptation regulation in a system is performed according to 
the law  

 
u = K (GT

(n) - G(n)),     (41) 
 

where GT
(n) = A0

(n)G is the desirable value of the senior derivative of equation (40) in an 
autocontrolled branch; G(n) is the current value of the senior derivative, K is a parameter of a 
regulator set-up.  

The resistance of a pressure-differential device of a branch is defined, in general, by a non-
linear function 

Rp(u) = fd (u),       (42) 
 

where fd(u) is an aerodynamic characteristic of the pressure-differential device. The 
formation of values of current phase co-ordinates of a branch and of the senior derivative is 
carried out by a real differentiating filter:  

Nf 
i(p)Gf = G(t),      (43) 

 
with Nf 

i = Nf 
3, Nf 

2, Nf 
1 is a characteristic equation of the filter of the third, second and first 

orders, respectively. 
The order of the filter inertia  (43) is assumed to be less than minimum time constant of the 

equation of a branch (39). According to this  
 

G(i) = Gf
(i),       (44) 

 



where G(i) is the evaluation  by derivative of an air flow rate. 
The system of equations (39) - (44) defines the required amplification factor of a regulator 

and the border of the control system stability area in a separate network branch as a function of 
parameters of the filter and regulator. Aerodynamics of controlled network object is described 
as a whole by the planimetric equation 

 
SxKx(p)Gx + SyKy(p)Gy + SRsZ = SH.     (45) 

 
Here Kx(p), Ky(p)  are matrixes of inertia factors, corresponding to branches of a tree and 

antitree of a network; H is a vector of depression of draft sources; Rs is a matrix of total 
aerodynamic resistance of all branches of a network; Sx, Sy, S are matrixes of planimetric 
factors of a network; Z is a vector of square-law flow rates of a network. The flows of the tree 
and antitree of a network object are connected by the equation of a continuity 

 
Gx = - WGy,       (46) 

 
where W = Ax

-1Ay are matrixes of  factors corresponding to the tree and antitree of a 
network. Taking into account (46) we shall present an equation (12) in the form of 

 
WyGy = SH - SRsZ,      (47) 

 
with Wy= SyKy(p) - SxKx(p)W. 
 
The analysis of the qualitative characteristics of the network object control system of the air 

distribution was carried out with the use of massive-parallel model of the network object. In 
the parallel model each vector element of the equation systems (40) - (44), (47) is assigned to a 
processor in the processor grid of MasPar system. The software of the massive-parallel model 
is realised in Parallaxis language.  

 
During simulation the following issues are considered: 

 transitions of establishment of a natural flow distribution in non-controllable network;  
 improvement of the required flow distribution in various points of the areas of stability 

and non-periodicity of control processes;  
 qualitative characteristics of static and dynamic errors when improving optimum 

trajectories in various modes of the system operation;  
 invariance of system to the change of fast non-stationary parameters of a network 

object; 
 border of the areas of stability and non-periodicity of the control processes depending 

on the amplification factor a regulator and on the parameters of set-up of differentiating 
filters of local control systems. 
 
Simulation has confirmed, that the law of control by the senior derivative, accepted in 

regulators, has properties of natural adaptation and independence of functioning of regulators 
under the conditions of fast changes of network parameters and provides accuracy acceptable 
in practice. The researches confirm, that the border of stability area of a network and 
periodicity of the control processes practically coincide with theoretical calculations in the 
vicinity of typical nominal mode of the network operation. 

 



7. Summary 

Research and development of main algorithms for the simulation of DNO with lumped and 
distributed parameters is carried out in accordance with the stated concept. The models are 
realised in the parallel programming language Parallaxis [5], which allows to conduct 
experimental researches of parallel algorithms both on the basis of a personal computer and on 
SIMD system MasPar. Based on the facilities of X Windows the user interface is realised, 
which integrates all developed algorithms into the uniform, convenient for user  simulation 
system. The parallel models created are used for the development of ventilation control 
systems for coal mines. The library, which is the main part of the parallel models subsystem of 
the DNO control system, is created. The results stated above are obtained by the authors 
within the framework of co-operation between Donetsk State Technical University and 
University of Stuttgart [2]. 
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