УДК 622.281.24

РАЗВИТИЕ СДВИЖЕНИЯ ПОРОДНОГО МАССИВА В ПРОЦЕССЕ РАЗРАБОТКИ УГОЛЬНОГО ПЛАСТА

Лобков Н. И., д-р техн. наук, доц., **Лобков А. А.,** инженер

(Республиканский академический научно-исследовательский и проектно-конструкторский институт горной геологии, геомеханики и маркшейдерского дела, г. Донецк, ДНР)

Приведены результаты физического моделирования сдвижения пород над выработанным пространством, возникновения разрушающей слой трещины. Изложен алгоритм определения величины предельного пролёта пород кровли.

Ключевые слова: горный массив, напряжения, изгиб слоев, обрушение, кровля пласта, разрушение.

В процессе подвигания лавы при выемке угля постоянно растет площадь очистной выработки, начиная с момента отхода лавы от разрезной печи (рис 1). Увеличивающаяся площадь обнажения кровли приводит к изгибу породных слоёв над выработанным пространством.

Целью работы является изучение характера сдвижения пород кровли при ведении очистных работ.

Метод физического моделирования [1;2] позволяет качественно и количественно устанавливать некоторые параметры сдвижения породного массива кровли пласта

Моделирование поведения пород кровли при выемке пласта d_4 шахты «Красноармейская-Западная №1» на модели из эквивалентных материалов показало следующее.

Слой № 1 (рис. 1,а) при отходе лавы от разрезной печи не более чем на 10 м ($l_{pn} \le 10$ м) зависает над выработанным пространством без заметных смещений. Дальнейшее подвигание лавы ведет к упругому деформированию слоя № 1. Слой № 2 при этом зависает без заметных смещений (рис. 1,б). Линии $A\mathbf{b}$ и $B\mathbf{f}$, соединяющие точки изгиба слоя №1, наклонены к горизонталь-

ной линии под углом 45°. При достижении предельного пролета слоя № 1 (l_{np}) перед обрушением отмечается максимальная величина его изгиба. Слой № 2 обнажился по линии \pmb{BB} и завис над слоем № 1. Малейшее дальнейшее подвигание забоя привело к обрушению слоя № 1 вместе со слоем № 2 (рис. 1,в). Слой № 3 завис над слоями № 2 и № 1. Углы наклона линии обрушения к горизонтали составили $\psi = 78^\circ$. Слои № 4, № 5, № 6 практически не сдвигались.

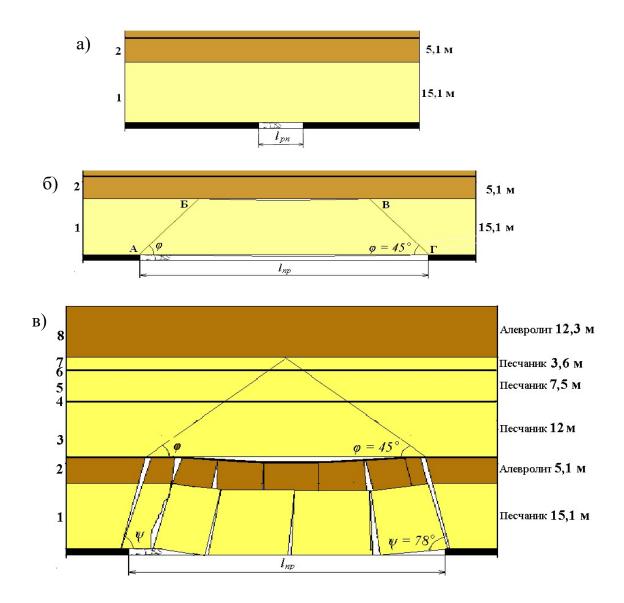


Рис. 1. Развитие длины выработанного пространства при подвигании лавы: a - до 10 м от разрезной печи; б - на величину предельного пролета слоя №1; b - на величину первичной посадки слоя №1; 1...8 - номера породных слоев

Таким образом, формирование области сдвижения пород в кровле пласта производится последовательным послойным изгибом породных слоев в пределах упругости с последующим последовательным послойным обрушением. Особенностью обрушения слоев является формирования групп слоев, в которых нижний слой, имеющий больший предельный пролет является несущим, а верхний или несколько верхних с меньшими предельными пролетами изгибаются и обрушаются вместе с несущим слоем. Такие слои с меньшими предельными пролетами являются пригрузкой несущему слою и способствуют уменьшению шага посадки.

Для прогнозирования числа породных слоев, приходящих в сдвижение над выработанным пространством в процессе выемки угля, кроме углов наклона линий изгиба (φ) и обрушения (ψ) слоев над выработанным пространством, необходимо знать их предельные пролеты. Поскольку предельный пролет слоя это пролет перед обрушением, рассмотрим его обрушение как средней части тонкой плиты жестко защемленной с двух, трех и четырех сторон [3]. Среднюю часть плиты можно представить в виде единичной балки-полоски жестко защемленной с двух сторон. Распределение горизонтальных напряжение в месте заделки балки приведено на рисунке 2.

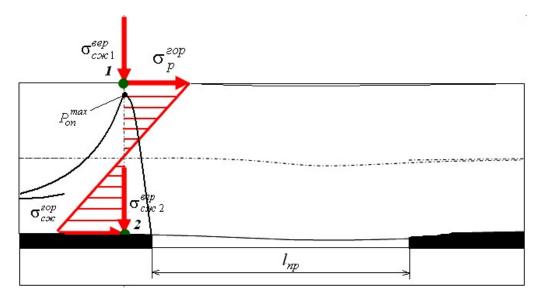


Рис. 2. Схема распределения напряжений в заделке слоя при его изгибе

Породный слой № 1 изгибаясь, формирует опорное давление на краевую часть пласта P_{on}^{max} . В результате физического моделиро-

вания установлено, что обрушение породного слоя во время первичной посадки происходит вследствие возникновения трещины на верхней его кромке и распространения ее по всей мощности до нижней кромки. На верхней кромке слоя действуют вертикальные сжимающие напряжения, $\sigma^{sep}_{cж1}$, вызванные опорным давлением P^{max}_{on} , а также горизонтальные растягивающие σ^{sop}_{p} .

На нижней кромке слоя действуют горизонтальные сжимающие напряжения $\sigma_{cж}^{cop}$ от изгиба слоя и $\sigma_{cж2}^{sep}$, возникшие в результате действия опорного давления и изгиба слоя. Очевидно, что под действием горизонтальных растягивающих напряжений σ_p^{cop} и при отходе лавы на величину l_{np} в точке 1 начнет зарождаться трещина. При пересечении трещиной слоя по всей мощности (достижении точки 2) произойдет обрушение слоя (рис.3).

Рис. 3. Распространение трещины в слое кровли перед обрушением

Трещины под действием растягивающих напряжений возникают и на нижней кромке изгибающегося слоя в центральной его части. Но их распространение по всей мощности слоя (до верхней кромки) сдерживается действием горизонтальных сжимающих напряжений. Развитию секущей трещины, из-за которой и происходит обрушение слоя, способствует деформирование угольного пласта в зоне восходящего опорного давления. Смя-

тие пласта ведет к расхождению берегов зародившейся трещины, чего не наблюдается у трещин на нижней кромке в середине слоя.

По А. Гриффитсу разрушение хрупких материалов начинается тогда, когда растягивающие напряжения на контуре концентраторов напряжений типа трещин, включений менее прочного материала и других микроскопических дефектов, достигают прочности молекулярных связей [4; 5]. Под действием максимальных горизонтальных растягивающих напряжений от верхней кромки слоя начинает развиваться трещина (рис. 4).

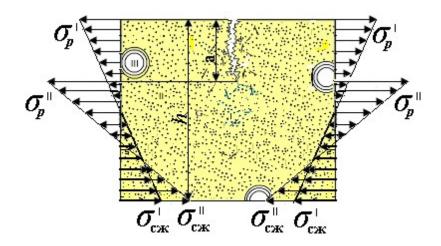


Рис. 4. Модель образования и развития трещины в породном слое: I, II, III – нарушения в породе различных характеров и форм; а – длина трещины.

С достижением трещиной длины **а**, максимум растягивающих напряжений смещается вниз на такое же расстояние. При этом увеличивается максимальная величина горизонтальных напряжений. Увеличение действующих горизонтальных напряжений ведет к увеличению скорости развития трещины и ее распространению к нижней кромке слоя. Увеличение растягивающих горизонтальных напряжений с увеличением длины трещины **а**, обеспечивает ее практически мгновенное распространение от верхней кромки слоя к нижней. Обрушение породного слоя происходит при пересечении его трещиной по всей мощности.

Величина горизонтальных напряжений в породном слое может быть определена из изгба балки при ее жестком защемлении с двух сторон на опорах [5].

$$\sigma_{\rho} = \frac{q l_{np}^2}{2h^2}, \, \text{M}\Pi \text{a}, \tag{1}$$

где q — распределенная нагрузка на породный слой, $M H/M^2$; $l_{\rm пp}$ — предельный пролет слоя перед обрушением, м; h — мощность несущего породного слоя, м.

Величина распределенной нагрузки, образованной весом группы слоев

$$q = \sum_{i=1}^{n} \gamma_i h_i, \text{ MH/M}^2, \tag{2}$$

где $\sum q$ – суммарная нагрузка группы слоев, Мн/м²;

n – количество слоев в группе.

Условие для образования трещины по А. Гриффитсу записывается

$$\sigma = \sqrt{\frac{2E\Gamma}{\pi\lambda_{_{\mathrm{T}}}}}, \, \text{M}\Pi\text{a}, \tag{3}$$

где σ – действующее напряжение, МПа;

 $l_{\rm T}$ – критическая длина трещины, м;

E – модуль упругости, МПа;

 Γ – поверхностная энергия тела, Дж/м².

Учитывая нарушенность вмещающего массива разрушение породного слоя при изгибе начнется с роста существующей трещины, критическая длина которой определится из выражения:

$$\lambda_{\kappa p} = \frac{2EG_c}{\pi \sigma_p^2}, \, M, \tag{4}$$

где G_c – эффективная поверхностная энергия (ЭПЭ), Дж/м²; σ_p – предел прочности породы на растяжение, МПа. Из выражений (1) и (4) определим:

$$\lambda_{\rm np}^2 = \frac{2h_c}{\gamma_c} \sqrt{\frac{2EG_c}{\pi \lambda_{\kappa p}}}, \,\, \mathbf{M}^2. \tag{5}$$

ЭПЭ суммарно учитывает все процессы, поглощающие энергию перед фронтом трещины. Поэтому ЭПЭ является наиболее полной характеристикой сопротивляемости горных пород разрушению. Для определения ЭПЭ в условиях ступенчатого подвигания очистного забоя (на ширину исполнительного органа выемочной машины) и увеличения напряжений соответствует метод центробежного разрыва дисков с отверстием по схеме [6].

Выводы

- 1. При деформировании породного слоя до первичной посадки угол изгиба ϕ составляет 45°.
- 2. Деформируемая кровля над выработанным пространством делится на группы слоев, которые состоят из несущего

слоя и слоев, изгибающихся и обрушающихся вместе с несущим, т.е. слоев пригрузки.

- 3. В процессе изгиба в несущем слое образовывается трещина на верхней его кромке, распространяющаяся по всей мощности, в результате чего группа слоёв обрушается.
- 4. Вышележащая группа слоёв изгибаются в пределах упругости без обрушения.
- 5. Определение разрушающих напряжений, возникающих на берегах трещины, дают возможность определить предельный пролет группы слоёв перед обрушением.

Библиографический список

- 1. Борисов, А. А. Механика горных пород и массивов [Текст] / А. А. Борисов. М.: Недра, 1980. 360с.
- 2. Кузнецов, Г. Н. Моделирование проявлений горного давления [Текст] / Г. Н. Кузнецов. М.: Недра, 1964. 420 с.
- 3. Бубнов, И. Г. Труды по теории пластин [Текст] / И. Г. Бубнов. М., Государственное изд-во технико-теоретической литературы, 1953. 423 с.
- 4. Griffits, A. The theory of rupture. Proceeding of 1-st International long. Appl. Mech., Delft, 1924, p. 55–63.
- 5. Партон, В. З. Механика разрушения: От теории к практике [Текст] / В. З. Партон.— М.: Наука Гл. ред. физ.—мат. лит., 1990.— 240с.
- 6. Пат. 39916 Україна, МПК (2009) G 01 N 3/00. Спосіб визначення тріщиностійкості гірських порід / Бачурін Л. Л., Ревва В. М., Кольчик Є. І.; заявник і патентовласник Інститут фізики гірничих процесів НАН України. № а 2007 01888 ; заявл. 23.02.07 ; опубл. 25.03.2009, Бюл. № 6.

Lobkov N. I., Lobkov A. A.

(Republican academic research and project-designer institute of mining geology, geomechanics and mine surveying, Donetsk, DPR)

DEVELOPMENT OF THE MOVEMENT OF THE ROCK MASSIF IN THE COAL SEAM EXCAVATION

The results of physical modeling of rock displacement over the mined-out space, the occurrence of a destruct rock sheet crack are given. The algorithm for determining the value of the limiting roof distance is described.

Keywords: rock massif, tensions, bending rock sheet, rock fall, roof of seam, destruction.