- 3. Vollhardt D. J. Phys. Chem. C 2007. 111. P. 6805.
- 4. Vysotsky Yu. B. Quantum Chemical Analysis of the Thermodynamics of 2D Cluster Formation of *n*-Carboxy Acids at the Air/Water Interface / Vysotsky Yu. B., Muratov D. V., Boldyreva F. L., Fainerman V.B., Vollhardt D. and Miller R. // J. Phys. Chem.B. 2006. V. 110. P. 4717–4730.
- 5. Vysotsky Yu. B. Thermodynamics of the Clusterization Process of *Cis* Isomers of Unsaturated Fatty Acids at the Air/Water Interface / Vysotsky Yu. B., Belyaeva E. A., Fainerman V. B., Vollhardt D., Aksenenko E. V., Miller R. // J. Phys. Chem. B. 2009. V. 113. P. 4347–4359.
 - 6. James J. P. Stewart. Mopac 2000 Manual. Fujitsu Limited 1999.
- 7. Vysotsky Yu. B. Quantum Chemical Analysis of the Thermodynamics of 2D Cluster Formation of Odd n-Alcohols at the Air/Water Interface / Vysotsky Yu. B., Bryantsev V. S., Fainerman V. B. // J. Phys. Chem. B. 2002. V. 106. P. 11285–11294.
- 8. Vysotsky Yu. B. Quantum chemical semi-empirical approach to the thermodynamic characteristics of oligomers and large aggregates of alcohols at the water/air interface / Vysotsky Yu. B., Bryantsev V.S., Fainerman V.B., Vollhardt D., Miller R // Colloids and Surfaces, A: Physicochemical and Engineering Aspects 209 (2002). P. 1–14.
- 9. Vysotsky Yu. B. Quantum Chemical Analysis of Thermodyna-mics of 2D Cluster Formation of *n*-Thioalco-hols at the Air/Water Interface / Vysotsky Yu. B., Belyaeva E. A., Fainerman V. B., Vollhardt D., Miller R. // J. Phys. Chem. C. 2007. V. 111. P. 5374–5381.
- 10. Vysotsky Yu. B. Quantum Chemical Analysis of the Thermo-dynamics of 2-Dimensi-onal Cluster Formation of Alkylamines at the Air/Water Interface / Vysotsky Yu. B., Belyaeva E. A., Fainerman V. B., Aksenenko D., Vollhardt E.V., Miller R. // J. Phys. Chem. C. 2007. V. 111(42). P. 15342–15349.
- 11. Vysotsky Yu. B. Simplified method of the quantum chemical analysis for determination of thermodynamic parameters of 2D cluster formation of amphiphilic compounds at the air/water interface / Vysotsky Yu. B., Belyaeva E. A., Vollhardt D., Aksenenko E. V., Miller R. // Colloid Interface Sc. 2008. V. 326. P. 339–346.

© Беляева Е.А., Фомина Е.С., Высоцкий Ю.Б., 2011

Надійшла до редколегії 28.02.2011 г.

УДК 547.521.68

В. Д. Александров, Н. В. Щебетовская (Донбасская национальная академия строительства и архитектуры)

К ВОПРОСУ О ДИАГРАММЕ СОСТОЯНИЯ РЕЗОРЦИН – ПИРОКАТЕХИН

В работе методами термического анализа, ИК-спектроскопии и рентгеноструктурного анализа установлен вид диаграммы состояния пирокатехин эвтектического типа ~50% С составом К. эффект компонентов при 332 Обнаружен резкого vвеличения предкристаллизационных переохлаждений по мере приближения состава к эвтектическому. Результаты трактуются на основе межмолекулярного взаимодействия и кристаллической структуры компонентов.

Ключевые слова: резорцин, пирокатехин, взрывная кристаллизация, термический анализ, дифференциально-термический анализ, диаграмма состояния, переохлаждения.

В литературе имеются сведения о том, что резорцин с пирокатехином образуют эвтектические смеси [1], однако вид диаграммы состояния резорцин – пирокатехин, построенной методами термического анализа, практически

отсутствует. Учитывая важность изучения процессов, происходящих при плавлении и кристаллизации резорцина и пирокатехина, в работе ставилась цель уточнить вид диаграммы состояния методами термического анализа, ИК-спектроскопии и рентгеноструктурного анализа.

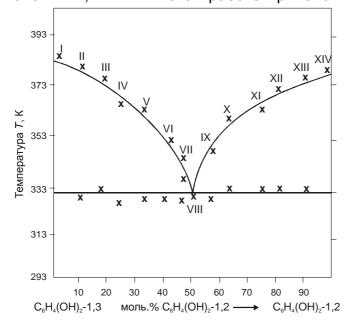
Методика эксперимента

исследования Основными методами были метод циклического термического анализа (ЦТА) в координатах температура T — время τ и дифференциально-термический анализ (ДТА) [2–4]. Сплавы сплавлением компонентов резорцина и пирокатехина марки ЧДА при температуре 395К в кварцевых ампулах. Масса всех образцов была одинаковой и составляла 0,45 г. Массы отдельных компонентов взвешивали электронных весах ВЛКТ-500г-М. Термоциклирование проводили в специально изготовленной печи сопротивления со скоростями нагревания и охлаждения в пределах 0,08-0,12 К/с. Приведенные скорости и массы, как было показано в наиболее работах [2-4]являются удобными для изучения предкристаллизационных переохлаждений ΔT^- , поскольку их средние значения практически не зависели от скоростей охлаждения от 0,001 до 10 К/с, от массы (от 0,1 до нескольких грамм), от величины прогрева ΔT^+ жидкой фазы относительно T_{i} (от 10 до 60 градусов) и от времени изотермической выдержки расплава в течение нескольких часов. Температуру измеряли с помощью хромель-алюмелевой термопары толщиной 0.2 мм, спай которой был погружен в образец. Погрешность измерения температуры составляла 0,5 К. Термограммы записывали на диаграммную ленту потенциометра КСП-4. Кроме температуру контролировали электронным вольтметром ΤΟΓΟ, Достоверность результатов подтверждалась их повторяемостью при большом количестве последовательных термоциклов (до 20 на каждом образце) и плавления (температур совпадением реперных точек резорцина пирокатехина) со справочными данными.

Для исследования методом дифференциальной сканирующей калориметрии использовали термоаналитический комплекс Du Pont 9900 в условиях линейного повышения температуры со скоростью 10°С/мин.

Кроме термических методов анализа в работе были использованы также методы ИК-спектроскопии и рентгеноструктурного анализа. ИК-спектры регистрировали на спектрометре Perkin-Elmer Spectrum BX (разрешение 4 см $^{-1}$, аподизация Бира-Нортона). Рентгеновские дифрактограммы получены на приборе ДРОН-3 в $Cu_{K_{\alpha}}$ -излучении с никелевым фильтром в диапазоне углов от 6 до 60° при скорости вращения счетчика 2°/мин.

Результаты экспериментов


Исследованы смеси $C_6H_4(OH)_2-1{,}3_{100-x}+C_6H_4(OH)_2-1{,}2_x$, где x=0 (образец I — чистый резорцин), 10 (II), 18 (III), 25 (IV), 32 (V), 40 (VI), 45 (VII), 50 (VIII), 58 (IX), 65 (X), 75 (XI), 82 (XII), 90 (XIII), 100 мол.% П (XIV — чистый пирокатехин).

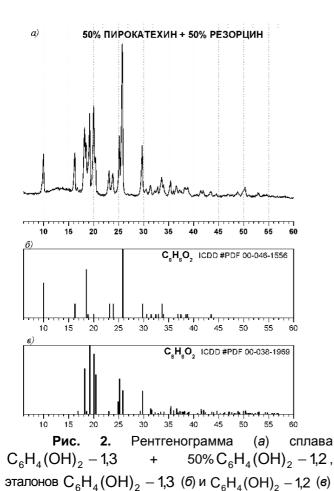
На основании кривых ДТА и ЦТА найдены значения температур ликвидус T_L и солидус T_S с разбросом $\pm 1,0 \div 2,0$ К. Эти сведения приведены в таблице 1.

Таблица 1. Экспериментальные данные по температурам солидус $T_{\rm S}$ и ликвидус $T_{\rm L}$, минимальным температурам $T_{\rm min}$ в области переохлаждения, а также по средним предкристаллизационным физическим $\langle \Delta T_{\rm e}^- \rangle$ и видимым $\langle \Delta T_{\rm e}^- \rangle$ переохлаждениям относительно соответствующих температур $T_{\rm L}$

Nº	Состав сплавов	$T_{\scriptscriptstyle S}$, K	$T_{\!\scriptscriptstyle L}$, K	$\langle T_{\scriptscriptstyle m min} angle$, K	$\langle \Delta T_{\phi}^{-} angle$, K	$\langle \Delta T_{\scriptscriptstyle g}^{\scriptscriptstyle -} \rangle$, K
образцов	мол.%	-5,	\mathbf{I}_L , \mathbf{K}	\ min / , i \	$(=i_{\phi})$, $($	(21, 7, 11
I	Резорцин (Р)	383	383	323	60	36
II	90%P + 10%Π	329 – 333	378 - 380	320	59	32
III	82%P + 18%Π	329 – 334	374 – 376	316	59	28
IV	75%P + 25%Π	328 – 332	371 – 373	312	60	23
V	68%P + 32%Π	328 – 331	357 – 360	298	60	16
VI	60%P + 40%Π	329 – 333	348 – 349	286	62	9
VII	55%P + 45%Π	330 – 334	343 – 346	280	65	5
VIII (Э)	50%P + 50%Π	330 – 333	330 – 333	250	82	0
IX	42%P + 58%Π	330 – 334	350 - 353	283	69	4
X	35%P + 65%Π	332-336	355 – 356	298	57	7
XI	25%P + 75%Π	331 – 335	360 - 362	325	36	11
XII	18%P + 82%Π	330-333	365 – 366	333	32	19
XIII	10%P + 90%Π	330 – 334	371 – 373	247	31	25
XIV	Пирокатехин (П)	378	378	348	30	30

Данные, приведенные для точек T_L и некоторых точек T_S (для сплавов VI–X), совпали с результатами работы [4]. Недостаточное число точек T_S для сплавов II–V, IX–XIII в этой работе привело к неточному изображению линии

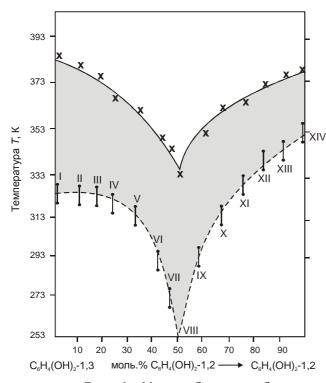
Рис. 1. Диаграмма состояния $C_6H_4(OH)_2-1{,}3-C_6H_4(OH)_2-1{,}2$, построенная по экспериментальным точкам T_L и T_S


солидус для этих сплавов. Более тщательное изучение сплавов методами термического анализа (увеличение числа образцов и количества термоциклов) позволило нам более надежно определить для них параметры $T_{\rm S}$ и установить вид диаграммы состояния. По $T_{I_{\perp}}$ точкам $T_{\rm S}$ построена диаграмма состояния резорцин пирокатехин (рис. 1) в части, ограниченной линиями ликвидус солидус. Полученная диаграмма соответствует диаграмме состояния эвтектического типа с эвтектикой по составу примерно равной

 $C_6H_4(OH)_2-1,3+50$ мол.% $C_6H_4(OH)_2-1,2$ при температуре $T_9\approx 332$ К . Подобные диаграммы состояния характерны для бинарных смесей диоксибензолов (резорцин – гидрохинон и пирокатехин – гидрохинон) [5].

О наличии механических смесей в системе резорцин – пирокатехин при температурах $T_{\rm S}$ свидетельствуют также спектроскопические (табл. 2) и рентгеноструктурные (рис. 2) исследования и некоторые литературные данные [1].

Таблица 2. Результаты спектроскопических исследований в системе резорцин-пирокатехин


Состав	ν _{max} (KBr)/cм ⁻¹			
Резорцин	3240, 3200, 1620, 1500, 1390, 1310, 1160, 970, 850, 780, 750, 690, 550, 470			
90% Р+10% П	3240, 3200, 1620, 1500, 1390, 1310, 1280, 1230, 1170, 1160, 1080, 970, 850, 780, 750, 690			
50% Р+50% П	3440, 3280, 1610, 1520, 1490, 1470, 1360, 1280, 1260, 1240, 1180, 1170, 1150, 1100, 1040, 960, 850, 770, 760, 740, 680, 640, 550, 500			
10% Р+90% П	3440, 3320, 3040, 1620, 1600, 1520, 1470, 1360, 1280, 1260, 1240, 1190, 1160, 1150, 1100, 1040, 960, 850, 780, 760, 740, 630, 500			
Пирокатехин	3440, 3320, 3040, 1620, 1600. 1520, 1470, 1360, 1280, 1260, 1240, 1190, 1100, 1040, 850, 770, 760, 740, 630, 500			

Ha следующем этапе были изучены предкристаллизационные переохлаждения ΔT^- ПО кривым охлаждения образцов I-XIV. Исследования показали, что, например, для резорцина средняя величина $\langle \Delta T^- \rangle$ относительно температуры его плавления $T_{i} = 384,0$ К составила ~63±5K, a пирокатехина \sim 30±3К при T_{i} = 378,0К. При этом кристаллизация резорцина, пирокатехина ИΧ сплавов носила И адиабатный характер, сопровождаемая быстрым подъемом температуры от минимальной T_{\min} .

Средние минимальные температуры T_{\min} в области переохлаждений на момент кристаллизации образцов I–XIV занесены в таблицу 1 и показаны на рис. 3, что позволило установить

метастабильную область между линией ликвидус и линией, соединяющей точки T_{\min} (см. заштрихованную область).

Рис. 3. Метастабильная область переохлаждений системы $C_6H_4(OOH_2-1,3-C_6H_4(OOH_2-1,2)$ относительно линии ликвидус

Из рис. 3 видно сильное *увеличение* переохлаждения относительно линии ликвидус по мере увеличения концентрации второго компонента, как справа, так и слева. Необычность этого факта заключается в том, что обычно для бинарных сплавов имеет место картина иная уменьшение переохлаждения по мере роста концентрации внедряемого компонента [6-7] вплоть до нуля при приближении к эвтектическому составу. Большое переохлаждение для сплава XIII (50% P + 50% П) возможно связано существованием кластеров, образующихся в жидком растворе соединении молекул $C_6H_4(OH)_2$ -1,2 и $C_6H_4(OH)_2$ -1,3 друг с другом по механизму дипольдипольного взаимодействия. Механизм кластерообразования между молекулами $C_6H_4(OH)_2$ -1,2 и

 $C_6H_4(OH)_2$ -1,3 подробно описан нами в работе [8].

Литература

- 1. Sharma B.L. Microstructures of binary organic eutectics / N.K. Sharma, P.S. Bassi // Journal of Crystal Growth. 1984. V. 67, Issue 3. P. 633–638.
- 2. Александров В.Д. Исследование кинетики кристаллизации пирокатехина / В.Д. Александров, В.А. Постников // Химия и химическая технология. 2005. Т. 48, вип. 12. С. 118–122.
- 3. Александров В.Д. Исследование переохлаждений при кристаллизации пирокатехина и резорцина / В.Д. Александров, В.А. Постников // Наукові праці ДонНТУ. Серія: Хімія і хімічна технологія. 2004. Вып. 77. С. 7–12.
- 4. Постников В.А. Кинетика кристаллизации низкомолекулярных органических веществ: дисс. ... канд. хим. наук: 02.00.04 / Постников Валерий Анатольевич. Макеевка, 2005. 221 с.
- 5. Щебетовская Н.В. Построение диаграмм состояния резорцин гидрохинон и пирокатехин гидрохинон методами термического анализа / Н.В. Щебетовская // Наукові праці ДонНТУ. Серія: Хімія і хімічна технологія. 2011. Вып. 16(184). С. 32–36.
- 6. Александров В.Д. Построение диаграммы состояния индий-сурьма по предкристаллизационным переохлаждениям / В.Д. Александров, М.Р. Раухман, В.И. Боровик и др. // Известия РАН. Металлы. 1992. № 6. С. 184–195.
- 7. Александров В.Д. Влияние термовременной обработки жидкой фазы на кристаллизацию сплавов в системе Sn Bi / В.Д. Александров, С.А. Фролова // Расплавы. 2003. № 3. С. 14–21.
- 8. Александров В.Д. Водородные связи между молекулами $C_6H_4(OH)_2$ -1,2 и $C_6H_4(OH)_2$ -1,3 в смесях резорцина с пирокатехином в конденсированном состоянии / В.Д. Александров, Н.В. Щебетовская // Вісник ДонНАБА. Сучасні будівельні матеріали. 2010. В. 1(81). С. 186–193.

© Александров В.Д., Щебетовская Н.В., 2011

Надійшла до редколегії 11.03.2011 г.