ИЗМЕРИТЕЛЬ ЕМКОСТИ И ЭКВИВАЛЕНТНОГО ПОСЛЕДОВАТЕЛЬНОГО СОПРОТИВЛЕНИЯ КОНДЕНСАТОРОВ

Кузнецов Д.Н., доц., к.т.н., доц.; Рыбалко Д., студ.

(ГОУ ВПО «Донецкий национальный технический университет, г. Донецк, ДНР»)

Как известно, причиной многих дефектов радиоэлектронной аппаратуры являются неисправные электролитические конденсаторы. Поиск неисправных конденсаторов с помощью тестера или измерителя емкости порой довольно затруднителен, т.к. емкость неисправного конденсатора может незначительно отличаться от номинальной, а значение ЭПС (эквивалентного последовательного сопротивления) может быть довольно большим. И именно ЭПС является важнейшим параметром для измерения при поиске неисправного конденсатора. В большинстве случаев это конденсаторы импульсных блоков питания в бытовой аппаратуре, импульсных блоков питания компьютеров, импульсных преобразователях на материнских платах, драйверы двигателей, строчные развертки и пр. В этих местах конденсаторы подвергаются значительному нагреву и быстрее выходят из строя.

Целью работы является разработка измерителя емкости и ЭПС электролитических конденсаторов для поиска неисправных конденсаторов без демонтажа их из печатной платы.

Наиболее часто применяемый способ измерения емкости основан на определении продолжительности зарядки конденсатора до известного напряжения с последующим вычислением емкости по формуле:

$$C = \frac{I \cdot t}{U},$$

где t – время зарядки конденсатора током I до напряжения U. Но при использовании этого способа на результат может существенно повлиять ЭПС конденсатора. Например при I=10 мA, U=1 В и $R_{ЭП}=20$ Ом окончание зарядки будет зафиксировано при напряжении на собственно конденсаторе 0.8 В, поскольку 0.2 В упадет на его ЭПС.

Рассмотрим способ измерений, представляющий собой усовершенствованный вариант описанного. Упрощенная эквивалентная схема конденсатора представляет собой идеальный конденсатор C и включенное последовательно с ним сопротивление R (рис.1).

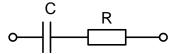


Рисунок 1 – Упрощенная эквивалентная схема конденсатора

Подключим эту цепь к источнику тока I. В начальный момент напряжение на этой цепочке будет равно $U=I\cdot R$, потом напряжение будет линейно расти за счет заряда конденсатора $U=I\cdot R+I\cdot t/C$. При отключении конденсатора от источника тока напряжение на нем уменьшится на величину $I\cdot R$. Вот эта величина и измеряется прибором. Зная ток и величину падения напряжения, получаем ЭПС.

Разработанная функциональная схема аналоговой части измерителя представлена на рисунке 2. В сравнении с прототипом [1] она значительно проще, дешевле и надежней. Схема работает следующим образом. Вначале исследуемый конденсатор заряжается от источника тока I_0 до напряжения 0,3 В. Небольшой уровень напряжения заряда позволяет исследовать конденсатор не выпаивая его из печатной платы. Одновременно заряжается конденсатор CI, который собственно и запоминает самое большое напряжение U_{I0} .

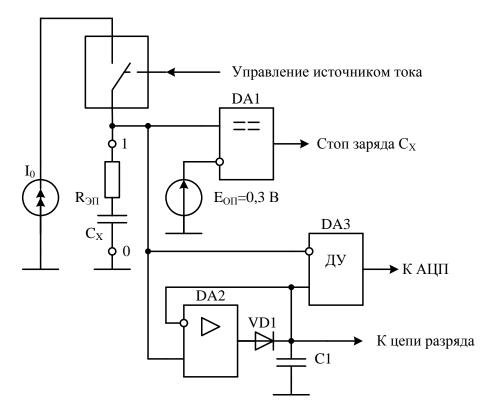


Рисунок 2 – Функциональная схема аналоговой части измерителя

Когда напряжение на конденсаторе достигает уровня 0,3 В, срабатывает компаратор DA1 и управляющий микроконтроллер отключает источник тока от конденсатора. При этом напряжение на конденсаторе уменьшится на величину $\Delta U_{I0} = I_0 \cdot R_{ЭII}$ (см. рис.3).

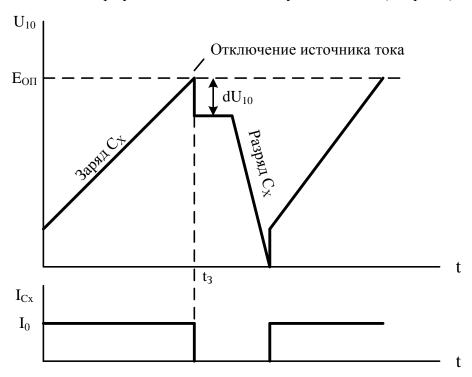


Рисунок 3 — Диаграммы напряжения и тока исследуемого конденсатора C_X

Данное напряжение усиливается дифференциальным усилителем DA3 с коэффициентом усиления K_{JV} =100 и с помощью АЦП измеряется микроконтроллером. Микроконтроллер по измеренному выходному напряжению дифференциального усилителя вначале рассчитывает ЭПС:

$$R_{\ni\Pi} = \frac{U_{,IJV}}{I_0 \cdot K_{,IJV}},$$

а затем емкость исследуемого конденсатора:

$$C_X = \frac{t_3}{\frac{E_{OII}}{I_0} - R_{\ni II}}.$$

Таким образом, алгоритм работы измерителя заключается в циклическом выполнении следующих действий:

- разряд конденсатора Сх;
- подключение источника тока к Сх;
- ожидание срабатывания компаратора;
- отключение источника тока и измерение времени зарядки Сх;
- опрос АЦП, вычисление ЭПС и Сх;
- вывод результатов на индикатор.

Аналоговую часть рассмотренного измерителя можно еще больше упростить, если использовать микроконтроллер со встроенным компаратором. В этом случае внешний компаратор DA1 из схемы можно исключить и всю аналоговую часть выполнить на одной микросхеме сдвоенного операционного усилителя, к примеру, LM358.

В таблице 1 приведены максимально допустимые значения ЭПС (Ом) для электролитических конденсаторов в зависимости от их номинала и допустимого напряжения.

Номинал, мкФ	Напряжение,В						
	10	16	25	35	63	100	250
1 мкФ				14	16	18	20
2,2 мкФ			6	8	10	10	10
4,7 мкФ			15	7,5	4,2	2,3	5
10 мкФ		8	5,3	3,2	2,4	3,0	2,5
22 мкФ	5,4	3,6	2,1	1,5	1,5	1,5	1
47 мкФ	2,2	1,6	1,2	0,68	0,56	0,7	0,8
100 мкФ	1,2	0,7	0,32	0,32	0,3	0,15	0,8
220 мкФ	0,6	0,33	0,23	0,17	0,16	0,09	0,5
470 мкФ	0,24	0,18	0,12	0,09	0,09	0,05	0,3
1000 мкФ	0,12	0,09	0,08	0,07	0,05	0,05	
4700 мкФ	0,11	0,08	0,07	0,05	0,04		
10000 мкФ	0.10	0.07	0.06	0.04			

Таблица 1 – Максимально допустимые значения ЭПС (Ом) конденсаторов

Выводы: разработанный измеритель емкости и ЭПС электролитических конденсаторов реализует усовершенствованный способ измерений, позволяет выполнять измерения без выпайки конденсаторов из печатной платы и при этом он проще и надежней своих аналогов.

Перечень ссылок

1. Измеритель С и ESR [Электронный ресурс]. – Режим доступа: http://rlc-esr.ru/index.php/izmeritel-s-i-esr . - Дата доступа: 18.04.2018. – Загл. с экрана.