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INTRODUCTION 

Artificial Neural Network (ANN) is a popular methodology nowadays with lots of practical and 
industrial applications. Therefore, the aim of the contribution is to explain how to use ANN with 
piecewise-linear activation functions in hidden layer in process control. To be more specific, there is 
described technique of controlled plant linearization using ANN nonlinear model. Obtained linearized 
model is in a shape of linear difference equation. 
1 ANN FOR APPROXIMATION 

 According to Kolmogorov's Superposition Theorem, any real continuous multidimensional 
function can be evaluated by sum of real continuous one-dimensional functions [1]. If the theorem is 
applied to ANN, it can be said that any real continuous multidimensional function can be approximated 
by certain three-layered ANN with arbitrary precision. Topology of that ANN is depictured in Fig. 1. 
Input layer brings external inputs x1, x2 xP  into 
ANN. Hidden layer contains S neurons, which process 
sums of weighted inputs using continuous, bounded 
and monotonic activation function. Output layer 
contains one neuron, which processes sum of weighted 
outputs from hidden neurons. Its activation function 
has to be continuous and monotonic.  

So ANN in Fig. 1 takes P inputs, those inputs 
are processed by S neurons in hidden layer and then by 
one output neuron. Dataflow between input i and 
hidden neuron j is gained by weight w1

j,i. Dataflow 
between hidden neuron k and output neuron is gained 
by weight w2

1,k. Output of the network can be 
expressed by following equations. 
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In equations above, 1(.) means activation functions of hidden neurons and 2(.) means output 
neuron activation function. 

As it is mentioned above, there are some conditions applicable for activation functions. To 
satisfy those conditions, there is used mostly hyperbolic tangent activation function (eq. 5) for neurons 
in hidden layer and identical activation function (eq. 6) for output neuron. 
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Mentioned theorem does not define how to set number of hidden neurons or how to tune 
weights. However, there have been published many papers which are focused especially on gradient 
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Fig. 1. Three-layered ANN 
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training methods (Back-Propagation Gradient Descend Alg.) or derived methods (Levenberg-
Marquardt Alg.) [2]. 
2 SYSTEM IDENTIFICATION BY ANN 

System identification means especially a procedure which leads to dynamic model of the 
system. ANN has traditionally enjoyed considerable attention in system identification because of its 
outstanding approximation qualities. There are several ways to use ANN for system identification. One 
of them assumes that the system to be identified (with input u and output yS) is determined by the 
following nonlinear discrete-time difference equation. 

In equation above,   is nonlinear function, k is discrete time and n is difference equation order. 
The aim of the identification is to design ANN which approximates nonlinear function (.). 

Then, neural model can be expressed by (eq. 8).  

MMM  

In (eq. 8),  represents well trained ANN and 

yM is its output. Formal scheme of neural model is 
shown in Fig. 2. It is obvious that ANN in Fig. 2 has 
to be trained to provide yM as close to yS as possible. 
Existence of such a neural network is guaranteed by 
Kolmogorov's Superposition Theorem and whole 
process of neural model design is described in detail in 
[2]. 

3 PIECEWISE-LINEAR MODEL 
As mentioned in section 1, there is recommended to use hyperbolic tangent activation function 

for neurons in hidden layer and identical activation function for output neuron in ANN used in neural 
model. However, if linear saturated activation function (eq. 9) is used instead, ANN features stay 
similar because of resembling courses of both activation functions. 
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The output of linear saturated activation function is either constant or equal to input so neural 
model which uses ANN with linear saturated activation functions in hidden neurons acts as piecewise-
linear model. One linear submodel turns to another when any hidden neuron becomes saturated or 
becomes not saturated. 

Let us presume an existence of some dynamic neural model which uses ANN with linear 
saturated activation functions in hidden neurons and identic activation function in output neuron. Let us 
also presume m = n = 2 for making process easier. ANN output can be computed using eqs. (1), (2), 
(3), (4). However, another way for ANN output computing is useful. Let us define saturation vector z 
of S elements. This vector indicates saturation states of hidden neurons  see (eq. 10). 
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Then, ANN output can be expressed by (eq. 11).  
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Fig. 2. Neural model 
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where :
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Thus, difference equation (11) defines ANN output and it is linear in some neighbourhood of 
actual state (in that neighbourhood, where saturation vector z stays constant). Difference equation (11) 
can be clearly extended into any order. 

In other words, if it is designed neural model of any nonlinear system in form described above, 
it is simple to determine parameters of linear difference equation which approximates system behaviour 
in some neighbourhood of actual state. This difference equation can be used then to the actual control 
action setting due to any of classical or modern control techniques. 

4 EXAMPLE 
Exemplary nonlinear controlled system is defined by difference equation (12).  

 (12) 

Firstly, system is controlled with PI controller tuned by trial and error. Control response for 
defined reference wS is shown in Fig. 3. Then, piecewise-linear neural model and Pole Assignment 
technique [3] are used for control (Fig. 4). Compared each other, there comes clear improvement with 
piecewise-linear neural model. 

5 CONCLUSIONS 

 

Fig. 3. Control response with PI 
controller 

The paper is focused on usage of neural network with linear saturated activation functions in 
process control. Neural model with such a neural network within is suitable for controller design using 
any of huge set of classical or modern control techniques. As example, there is presented control of 
nonlinear discrete plant using Pole Assignment technique. Comparison to control performance provided 
by PI controller proves great improvement. The work has been supported by the funds No. MSM 
6046137306 and No. MSM 0021627505 of Ministry of Education of the Czech Republic and No. MEB 

 
Fig. 4. Control Response with Piecewise-Linear 

Neural Model  
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0810003 of Ministry of Education of the Czech Republic and Ministry of Education of the Slovak 
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