ПУТИ РЕШЕНИЯ ПРОБЛЕМЫ ЭНЕРГОЭФЕКТИВНОСТИ УГОЛЬНЫХ ШАХТ

Заверталюк Д. студ.; Рак А.Н., доц., к.т.н.; Саулин В.К. ст.преп.

(ГОУВПО «Донецкий национальный технический университет», г. Донецк, ДНР)

По данным многих промышленных предприятий Донбасса показатель их энергоемкости в несколько раз превышает показатели развитых стран Западной и Восточной Европы. Так, энергоемкость ВВП Украины в 2010г. составила 0,55 т у.т. на 1000 долларов ВВП по сравнению с 0.15 – для Германии, 0,19 – для Польши и 0,44 – для России.

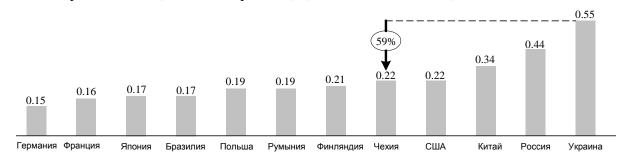


Рисунок 1 - Сравнение энергоемкости ВВП различных стран

Такое состояние является следствием особенностей структуры Донецкого региона, смещенной в сторону энергоемких отраслей, существенного технологического отставания большинства отраслей экономики от уровня развитых стран, а также ценовых искажений на внутренних энергетических рынках.

Кроме того, зависимость региона от импортных энергоносителей – газа и нефти, ограничивает конкурентоспособность регионального производства. С другой стороны, вопрос энергоэффективности производства непосредственно связано с экологической ситуацией в регионе, а также является важным с точки зрения энергетической безопасности.

Общими показателями энергетической эффективности, которые определяются на уровне государства являются: энергоемкость, электроемкость и топливоемкость ВВП. Таким образом, снижение энергоемкости ВВП является одной из приоритетных целей государственной политики в области энергетики.

В ближайшие годы потребности в наращивании добычи и потребления угля будет возрастать с повышением цен на импортируемый природный газ, а также с интенсивным развитием электроэнергетики и металлургии.

Повышение цен мирового рынка на энергоносители требует поиска новых источников углеводородных видов топлива.

Одним из шагов для наращивания добычи является модернизация угольных шахт и, в первую очередь, с точки зрения повышения энергоэффективности производства.

Региональный шахтный фонд — один из наиболее тяжелых. Это обусловлено чрезвычайно сложными горно-геологическими условиями деятельности угледобывающих предприятий. Так, на большинстве шахт глубина проведения горных работ около 750м, а на некоторых она достигает 1300м.

Рисунок 2 - структура глобальных выбросов шахтного метана по различным странам

Температура горных пород достигает 45°C. Но наибольшая сложность горно-геологических условий состоит в том, что преимущественная часть угольных пластов опасна при добыче угля. 90% действующих шахт характеризуются высоким риском добычи угля по причине повышенного содержания метана и внезапным выбросам метана. На рис.2 приведена структура выбросов шахтного метана по глобальных различным странам. Эффективным средством борьбы с метаном считается опережающая дегазация **УГОЛЬНЫХ** пластов, что, несомненно, повышает безопасность проведения горных работ.

На рис.3 приведена информация о наличии систем дегазации и их эффективности.



Рисунок 3 – Системы дегазации и их эффективность

Из рис.3 следует, что системы дегазации есть лишь у каждой четвертой шахты, и за последние 16 лет выбросы метана на шахтах сократились в 3 раза. Естественно, что предварительная дегазация угольных пластов представляет собой важное звено в технологической цепочке добычи угля. А далее возникают вопросы, каким образом его использовать. К таким вопросам периодически возвращаются, особенно, когда возникает рост цен на углеводородные энергоносители. Технология утилизации шахтного метана путем его сжигания в котельных шахт не является новшеством и известна еще с 40-х годов XX столетия. В последние годы на целом ряде шахт Донбасса довольно успешно реализовывались проекты по использованию метана в газовых двигателях для выработки электрической и тепловой энергии (когенерация). Но здесь необходимо учитывать, что шахтный метан, как правило, используют при его концентрации свыше 25% с предварительной очисткой и сушкой.

Появились технологии использования каптируемого газа для производства тепло- или электроэнергии. При этом отмечается, что наилучших результатов удалось достигнуть в Австралии, Германия, Японии, Великобритания и США, где эксплуатируются установки для получения тепловой и электрической энергии производственной мощностью от 150 кВт до 94 МВт.

В табл.1 приведена информация по различным технологиям утилизации шахтного метана по опыту $\Phi P\Gamma$.

Таблица 1- Ориентировочная сводная таблица по различным технологиям утилизации шахтного метана (опыт $\Phi P\Gamma$)

Показатели	КГУУ 5/8 КотельнаяКонт. ТЭС		
Оптимальная мощность, МВт	5 тепла	15 тепла	1,35 эл.
Расход метана, 100% CH ₄ , м ³ /мин	8,36	25	6,27
Реальное количество часов работы в году	7.700	2.000	6.000
Получаемые снижения эмиссий СО2 т/год	50.000	65.000	37.000
Количество снижаемых эмиссий CO ₂ т/г на 1м ³ /мин сжигаемого 100	6.000	700	4.600
%СН ₄ в установке из перерасчета 7.700 часов в году работы			
Капитальные затраты всего проекта*, евро	400.000	500.000	1.300.000
Годовые эксплуатационные затраты, евро/г	50.000	70.000	300.000
Снижение CO_2 т/г на 100.000 евро кап. затрат	12.500	13.000	2.800
Снижение CO_2 т/6 лет на 100.000 евро всех затрат по 2012 г	43.000	43.000	7.200
Дополнительный доход к снижению эмиссий	ДегазацияТепло		Электро- и
			теплоэнергии

Наибольшую пропорцию от общего выброса метана в процессе добычи угля составляют выбросы метана через систему вентиляции в шахтах с содержанием метана в воздухе менее 1%. Несмотря на низкие концентрации, в структуре глобальных выбросов метана является крупнейшим отдельным источником выбросов. Ежегодно в мире выбрасывается в атмосферу около 1,5 млрд. м³вентиляционного метана, что является эквивалентом 200 млн. т парникового газа CO₂.

К технологии утилизации ближайшего будущего не следует относить и проекты по сжиганию газа вентиляционной струи, этот вопрос технически еще не решен. В настоящее время ни на одной шахте мира данные установки не работают, экспериментальная работа подобных установок в других отраслях экономически себя не оправдывает. Информация в прессе о подобных проектах была недостоверной, разработчики выдают желаемое за действительное, а трудности финансирования эксперимента задерживают его реализацию.

Доработка этих инженерных предложений до серийного производства потребует еще более пяти лет, а Киотский протокол действует в настоящее время только до 2012 г., то есть только до этого времени можно реально учитывать доходы от снижения выбросов.

Дальнейший анализ литературных источников позволил сделать выводы:

- повысить безопасность труда шахтеров и увеличить производительность предприятий;
- снизить себестоимость продукции;
- обеспечить предприятие электрической и тепловой энергией, а в летние месяцы использовать тепло в установках кондиционирования шахтного воздуха;
- существенно повысить энергетическую безопасность предприятия за счет диверсификации источников энергоносителей;
- значительно снизить выбросы парникового газа шахтного метана в атмосферу и улучшить экологическую ситуацию окружающей среды.

Перечень ссылок

- 1. Амоша А.И., Логвиненко В.И., Гринев В.П. Комплексное освоение угольных месторождений Донецкой области: Монография/ НАН Украины: Ин-т экономики промышленности Донецк, 2007. 216с.
- 2. Безпфлюг. В.А. Опыт дегазации и утилизации шахтного метана в Φ РГ и CHГ// www.Demeta.net .