

Развитие компьютерных технологий,

технический прогресс и эволюция

Предельное обобщение закона Мура

Аноприенко Александр Яковлевич

Донецкий национальный технический университет БАЗ-1 ДонНТУ 26.05.2016

Компьютерные технологии: бум законов развития!

Ни одна отрасль техники никогда еще не порождала столько «законов» (эмпирических закономерностей) за такое короткое время

Зако́н Му́ра (Moore's Law) – эмпирическое наблюдение, изначально (в 1965 г.) сделанное Гордоном Муром, согласно которому количество транзисторов, размещаемых на кристалле интегральной схемы, удваивается каждые 24 месяца. В последующем появились и другие интерпретации данного закона.

Закон Рока (Rock's law) или второй закон Мура, сформулированный в середине 90-х годов Юджином Мейераном и утверждающий, что стоимость фабрик по производству полупроводников аналогично закону Мура удваивается примерно каждые 4 года.

Закон Гроша (Grosch's Law), предполагающий, что производительность компьютеров, увеличивается как квадрат их стоимости.

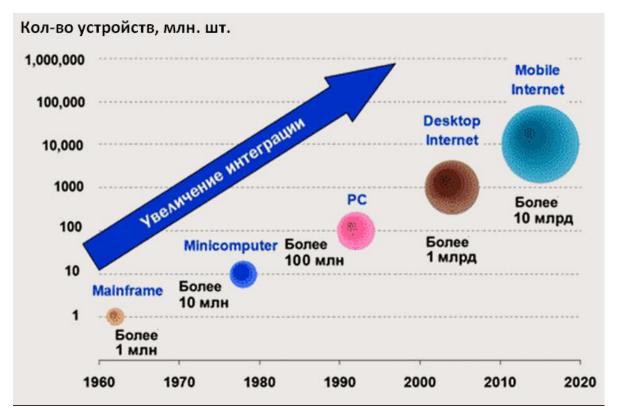
Закон Куми (Koomey's Law) – своеобразный «экологический» вариант закона Мура, гласящий, что фундаментальной особенностью развития вычислительной техники является рост энергоэффективности (т.е. среднего количества вычислений на единицу электроэнергии), возрастающий примерно в два раза каждые полтора года.

Закон Крайдера (Kryder's Law) – вариант закона Мура для дисковых накопителей, предложенный вицепрезидентом по научным разработкам компании Seagate в 2005 г. и констатирующий, что плотность записи на магнитные диски удваивается приблизительно каждые восемнадцать месяцев. Это также означает, что стоимость хранения информации снижается вдвое каждые восемнадцать месяцев.

Закон Буттера (Butter's Law) – количество данных, передаваемых через волоконно-оптические линии связи, удваивается каждые 9 месяцев.

Закон Купера (Cooper's Law) – количество мобильных пользователей удваивается каждые 30 месяцев. Закон Меткалфа (Metcalfe's Law) – полезность сети пропорциональна квадрату численности пользователей этой сети.

Закон Нильсена (Nielsen's Law) – пропускная способность, доступная пользователям Интернет растет на 50 % ежегодно или удваивается каждые 21 месяц.



Обобщенный закон **Мура**

Информационно-компьютерная революция (**ИКР**): **Невиданные ранее темпы технического прогресса!**

Рост количества программируемых устройств...

За 40 лет с 1964 по 2014 г. – в тысячу раз !!!

Обобщенный закон **Мура**

Информационно-компьютерная революция (ИКР):

Невиданные ранее темпы технического прогресса!

Рост сложности программируемых устройств

(если бы транзисторы были людьми, а процессоры – городами и странами)

За 40 лет с 1974 по 2014 г. – в миллион раз !!!

Обобщенный закон **Мура**

Информационно-компьютерная революция (ИКР):

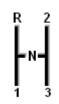
Невиданные ранее темпы технического прогресса! Рост производительности компьютерных систем

Информационно-компьютерная революция (**ИКР**): **Невиданные ранее темпы технического прогресса!**

Продуктивные компьютерные аналогии:

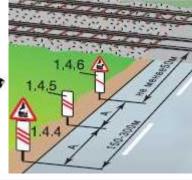
«Если бы эффективность автомобильного топлива увеличивалась такими же темпами, то на одной заправке можно было бы ездить всю жизнь без какой-либо дозаправки...»

Нарастающая популярность сравнений типа «Если бы что-то еще в автомобильной промышленности развивалось в этот период такими же темпами...»

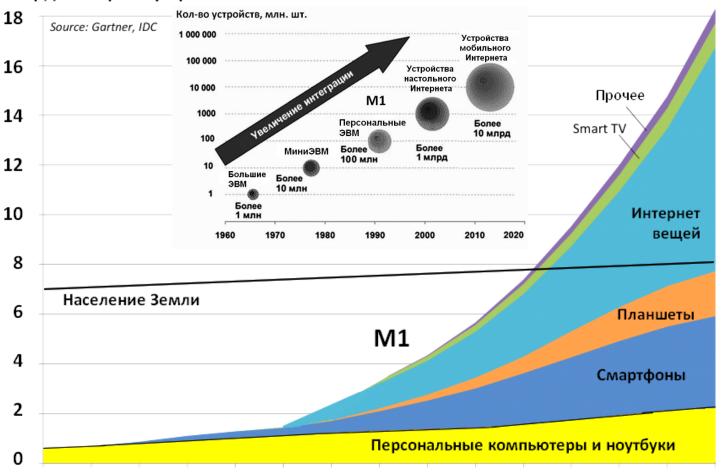

Если бы автомобили уменьшались такими же темпами как уменьшаются размеры транзисторов, то автомобили сейчас были бы размером с муравья....

Но насколько же реально ускорился технический прогресс?

М: Простейшее «3-скоростное» обобщение закона Мура


Закономерность	Описание закономерности	Обозна	M	Коэффициенты роста за 1 год и 10 лет	
_	_	чение		1 (EKP)	10 (10 ^M)
«Медленный закон Мура»	Рост в 10 раз каждые 10 лет	M1	1	1,26	<mark>10</mark>
Современный «Закон Мура»	Удвоение каждые 1,5 года (10-кратно каждые 5 лет)	M2	2	1,587	<mark>100</mark>
Первоначальный закон Мура	Ежегодное удвоение	M3	3	2	1 000

С 1910-х до начала 1960-х большинство автомобилей имело трёхступенчатые коробки передач - в СССР память об этом осталась в дорожных знаках приближения к железнодорожному переезду

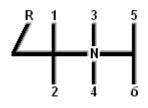


М1: Рост количества программируемых устройств

(медленный закон Мура) Млрд. Интернет-устройств

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

L: Основное **«6-скоростное» обобщение** закона Мура

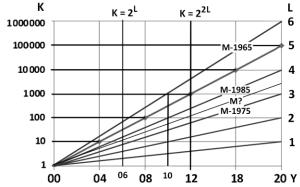

	Zavouomonuosti	EKP	Коэ	фицие	нт роста	а за указ	анный	перио	д (Ү лет)	Интервал удвоения	
	L Закономерность		2	3	4	5	6	10	20	Лет	Месяцев
1	Рост в 10 раз каждые 20 лет	1,122	1,260	1,414	1,587	1,782	2	3,175	10	6	72
2	Рост в 10 раз каждые 10 лет	1,260	1,587	2,000	2,520	3,175	4	10	102	3	36
3	Закон Мура 1975: удвоение каждые 2 года	1,414	2,000	2,828	4,000	5,657	8	32	1 024	2	24
4	Закон Мура 1985: удвоение каждые 1,5 года (ряд Фибоначчи)	1,587	2,520	4,000	6,350	10,079	16	102	10 321	1,5	18
5	Рост в 10 раз каждые 4 года	1,782	3,175	5,657	10,079	17,959	32	323	104 032	1,167	14
6	Закон Мура 1965: ежегодное удвоение	2	4	8	16	32	64	1024	1 048 576	1	12

M1 = L2 Переход от 10-летних к

M2 = L4 20-летним базовым

M3 = L6 периодам

В 1990-е годы появились шестиступенчатые коробки передач


Обобщенный закон **Мура**

2015: для ИКТ

Обобщенный закон Мура

$$P_i = P_0 \cdot 2^{L(Yi - Y0)/6},$$

Количество десятичных порядков роста за базовый 20-летний период

где L – коэффициент, равный порядковому номеру закономерности при их упорядочивании в соответствии с возрастанием темпов экспоненциального роста;

Y0 – начальный год действия соответствующей закономерности;

Yi – текущий год действия соответствующей закономерности;

P₀ – значение наблюдаемого параметра в начальном году;

Р_і – значение наблюдаемого параметра в искомом году.

L	Закономерность	Ежегодный коэффициент роста (ЕКР)	т Коэффициент роста за указанный период (Ү лет)								
		1	2	3	4	5	6	8	10	12	20
1	Рост в 10 раз каждые 20 лет	1,122462048	1,25992105	1,41421356	1,58740105	1,781797436	2	2,52	3,17	4	10
2	Рост в 10 раз каждые 10 лет	1,25992105	1,58740105	2	2,5198421	3,174802104	4	6	10	16	102
3	Закон Мура 1975: удвоение каждые 2 года или рост в √2 раз ежегодно	1,414213562	2	2,82842712	4	5,656854249	8	16	32	64	1 024
4	Закон Мура 1985: удвоение каждые 1,5 года (ряд Фибоначчи)	1,587401052	2,5198	4,0000	6,3496	10,0794	16	40	102	256	10 321
5	Рост в 10 раз каждые 4 года	1,781797436	3,1748	5,6569	10,0794	17,9594	32	102	323	1024	104 032
6	Закон Мура 1965: ежегодное удвоение	2	4	8	16	32	64	256	1024	4096	1 048 576

S: Предельное обобщение закона Мура

	Базовый период, лет	20	200	2000		2 млрд. лет	Базовый период	
	Коэффициент роста за	Коэ	ффициент	ы ежегодн	юго	роста	удвоения (D)	
Х	базовый период (К)	sX	sOX	s00X		s 000 000 00X	Лет	Месяцев
1	10	1,12	1,012	1,0012		1,000000012	6,00	72
2	100	1,26	1,023	1,0023	:	1,0000000023	3,00	36
3	1 000	1,41	1,035	1,0035	:	1,000000035	2,00	24
4	10 000	1,58	1,047	1,0046		1,0000000046	1,50	18
5	100 000	1,78	1,059	1,0058		1,0000000058	1,17	14
6	1 000 000	2,00	1,072	1,0069	:	1,0000000069	1,00	12
7	10 000 000	2,24	1,084	1,0081		1,0000000081	0,86	10
8	100 000 000	2,51	1,096	1,0093		1,0000000092	0,75	9
9	1 000 000 000	2,82	1,109	1,0104				
10	10 000 000 000	3,16	1,122	1,0116		135724		

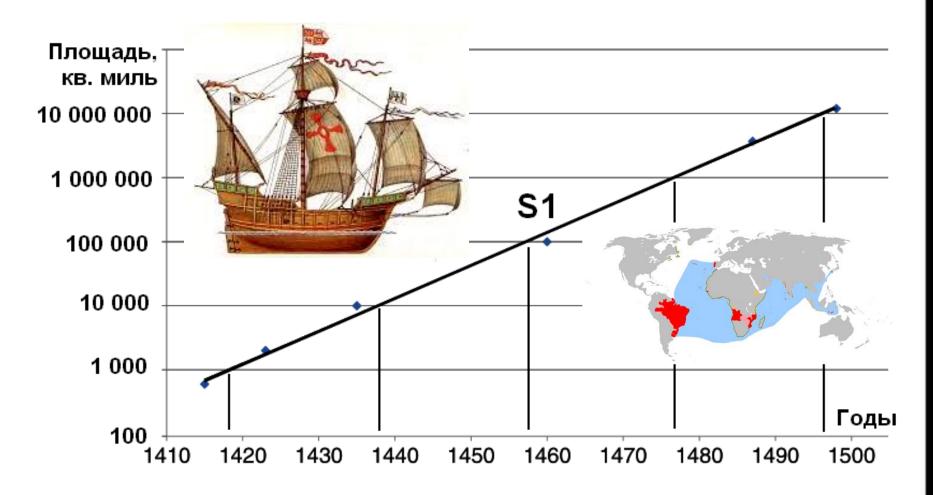
С 2000-х годов стали появляться более чем 6-ти скоростные автомобили...

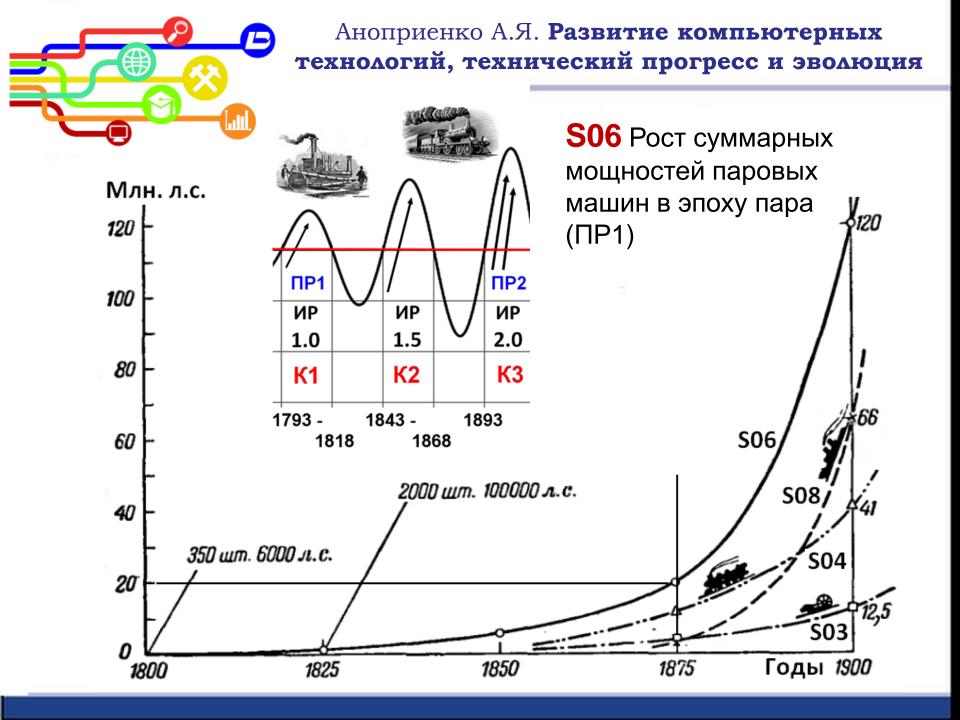
2016: для всех видов прогресса

Дальнейшее (предельное) обобщение закона Мура

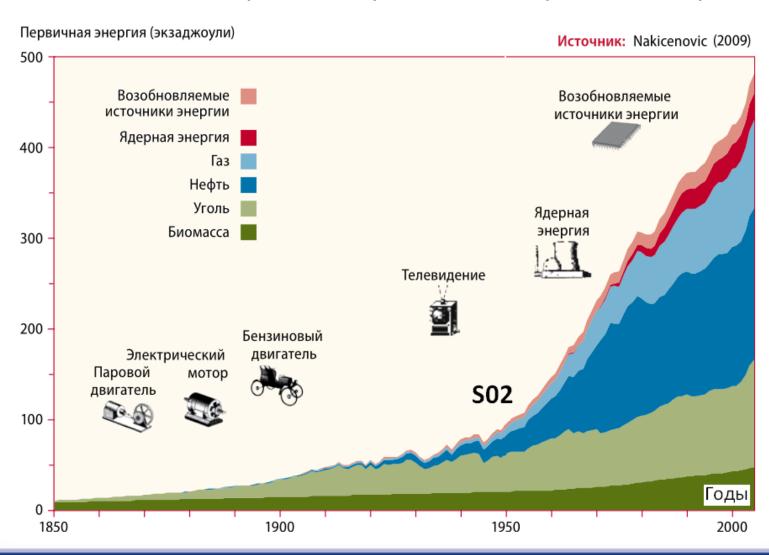
Для закономерности, обозначенной SK: $P_i = P_0 \cdot 2^{S \cdot (Yi - Y0)/6}$,

где S = 10.0, K

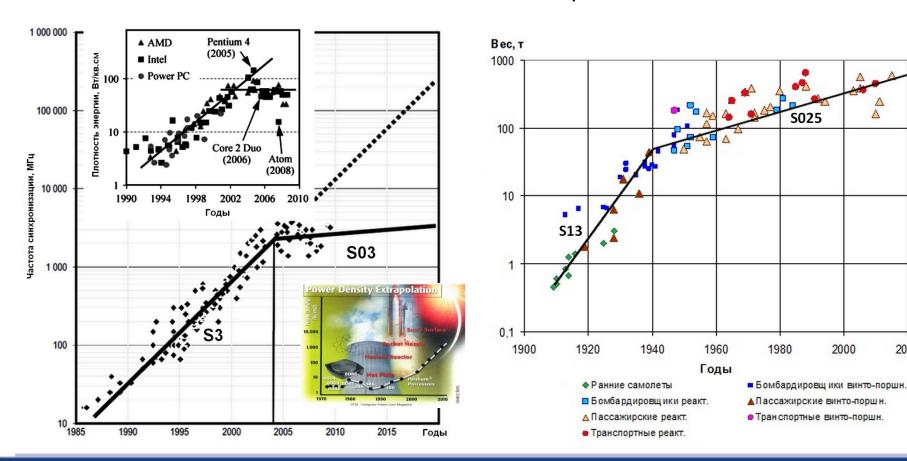

		Ежегодные коэффициенты роста					
	Коэффициенты роста						
	за базовый период	20 лет:	200 лет:	2000 лет:			
X	(20, 200, 2000 лет)	sX	s0X	s00X			
1	10	1,12	1,012	1,0012			
2	100	1,26	1,023	1,0023			
3	1 000	1,41	1,035	1,0035			
4	10 000	1,58	1,047	1,0046			
5	100 000	1,78	1,059	1,0058			
6	1 000 000	2,00	1,072	1,0069			
7	10 000 000	2,24	1,084	1,0081			
8	100 000 000	2,51	1,096	1,0093			
9	1 000 000 000	2,82	1,109	1,0104			
10	10 000 000 000	3,16	1,122	1,0116			


т.е., например, для S1 S=1 для S05 S=0,5 для S225 S=2,25

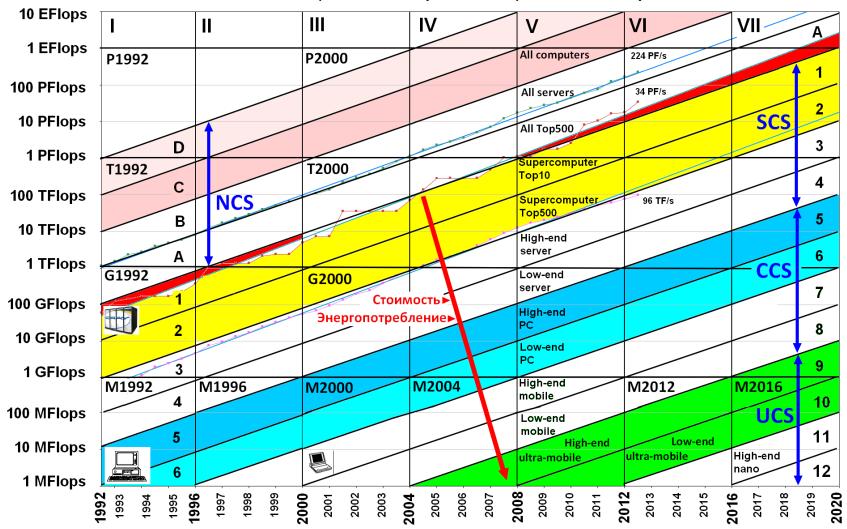
Пусть n – количество знаков (цифр), составляющих К. Тогда К показывает на сколько десятичных порядков вырастет соответствующее значение за $2\cdot10^n$ лет


\$1 Начало эпохи Великих географических открытий: Рост площади, контролируемой Португалией (PB)

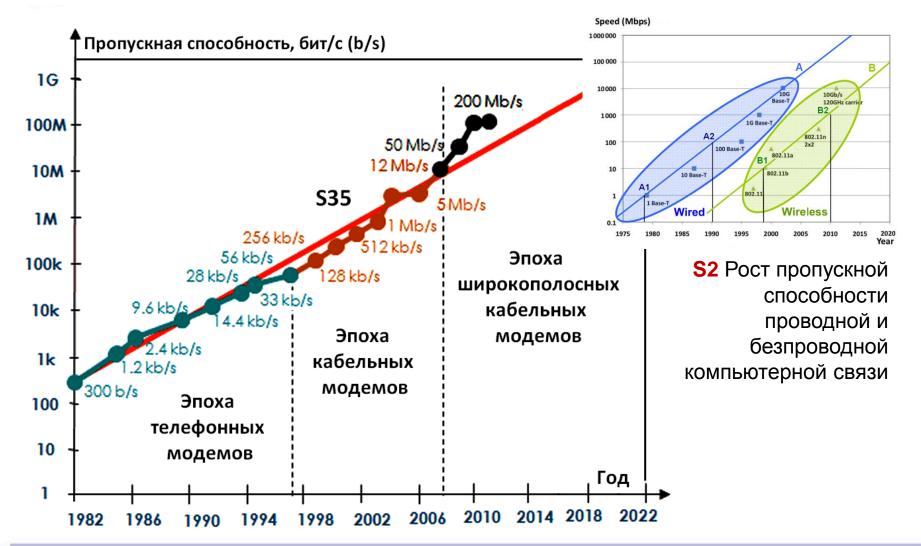
S02 Мировые потребности в первичной энергии



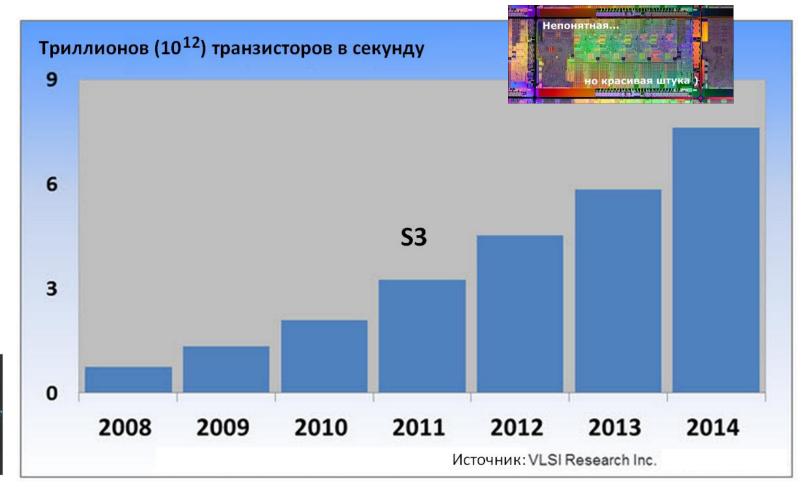
2020

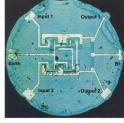

Когда прогресс упирается в фундаментальные ограничения:

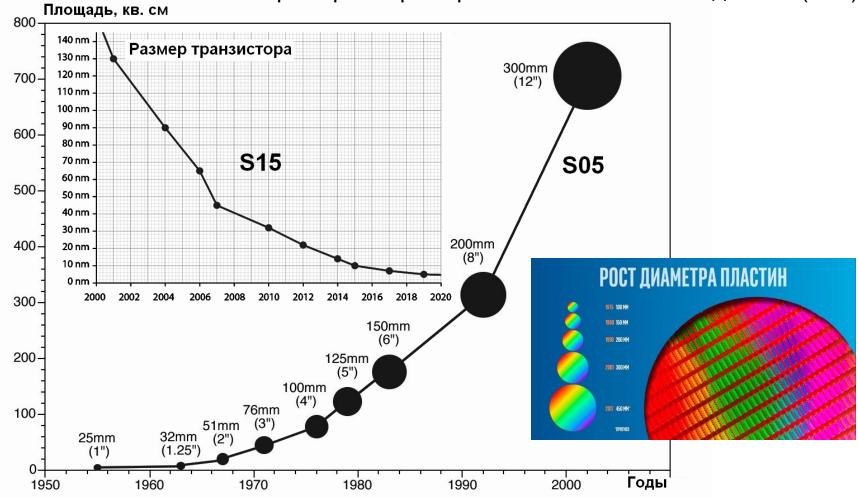
S3 Рост частоты синхронизации процессоровS13 Рост взлетного веса самолетов различных классов

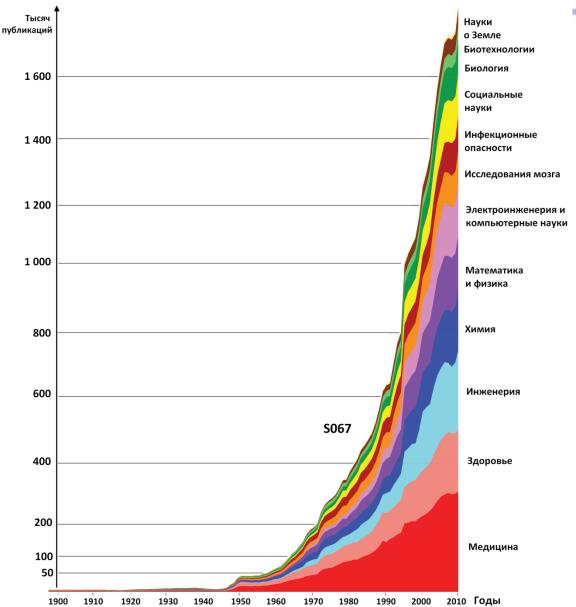


\$5: Экспоненциальный рост производительности (и классификация) компьютерных систем

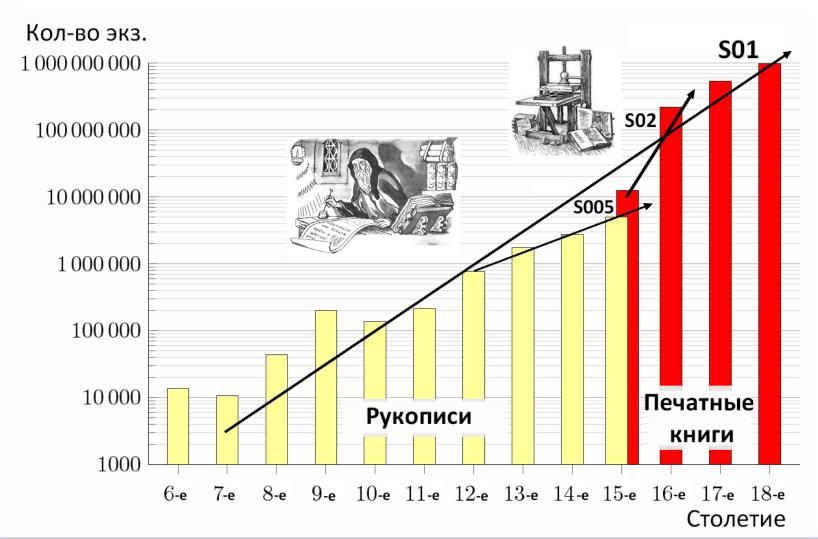



S35 Рост пропускной способности линий связи

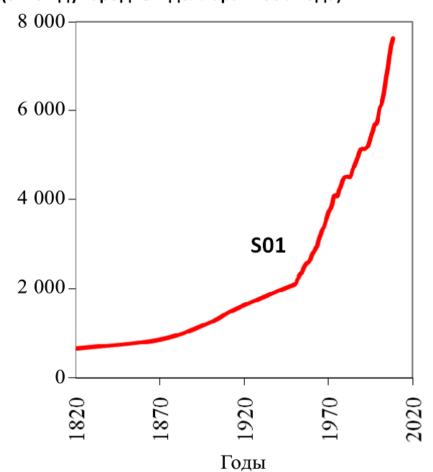

S3 Рост глобального производства транзисторов (в составе интегральных микросхем)

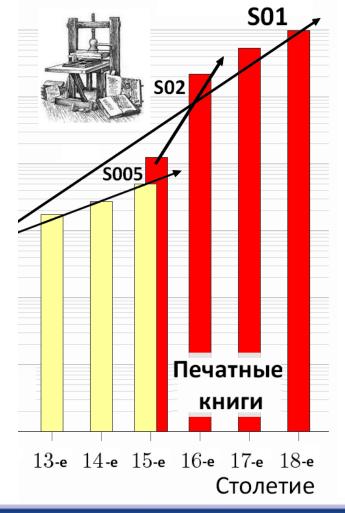


\$15 Уменьшение размеров транзисторов и рост размеров кремниевых пластин-подложек (**\$05**)



\$067 Рост числа публикаций в мире (по данным Scopus)


S01 Рост суммарного тиража книг в Европе



S01 Рост суммарного тиража книг в Европе и среднегодового дохода на душу населения

Среднемировой годовой доход на душу населения (в международных долларах 1990 года)

7/3 (0

1070

1360

1070

703

2012: Количество издаваемых книг на 1 миллион населения

Уровень образования определяет богатство народа! Но не наоборот!

№ РИАНОВОСТИ © 2011 WWW.RIA.RU

1160

1580

Технический прогресс и знания – богатство будущего!

WikipediA

1

English

The Free Encyclopedia
5 077 000+ articles

Español

La enciclopedia libre 1 233 000+ artículos

Deutsch

Die freie Enzyklopädie 1 907 000+ Artikel

Italiano

L'enciclopedia libera 1 252 000+ voci

中文

自由的百科全書 863 000+條目

日本語

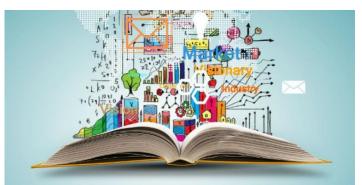
フリー百科事典 1 001 000+ 記事

Русский

Свободная энциклопедия 1 289 000+ статей

Français

L'encyclopédie libre 1 723 000+ articles

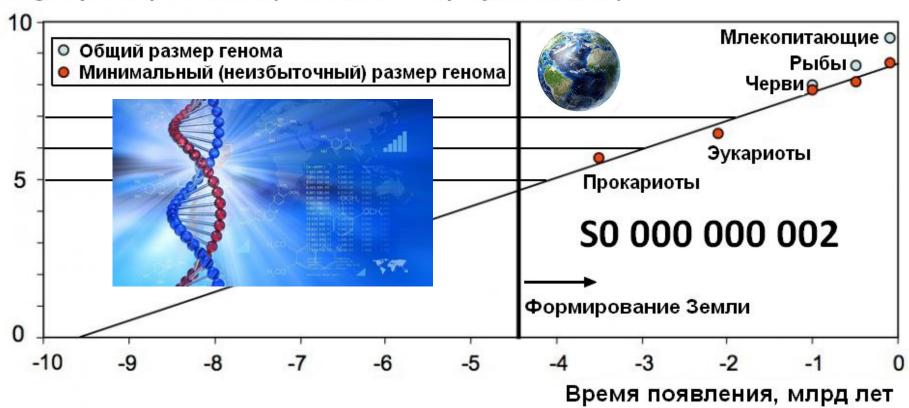

Português

A enciclopédia livre 909 000+ artigos

Polski

Wolna encyklopedia 1 154 000+ haseł

PediaPress планирует издать полную англоязычную Википедию в **1000 томов!**


Энциклопедии нового поколения созданы не академиками, а студентами, аспирантами и преподавателями!

Закон Мура в эволюции жизни...

Базовый период: **20 млрд лет**

Log10 размера генома (количество пар нуклеотидов)


Алексей Шаров из Лаборатории генетики Национального института старения (Балтимор, США): **закон Мура в эволюции генома**

Закон Мура в эволюции жизни...

Базовый период: 20 млрд лет

Log10 размера генома (количество пар нуклеотидов)

На Земле нет осадочных отложений без признаков жизни!

Некоторые следствия и выводы:

Эти данные подтверждают **«презумпцию Вернадского»**, которую он выдвинул в 1922 году, согласно которой **жизнь на Земле существовала всегда**, и, пока не доказано обратное, считать надо именно так.

Аноприенко А.Я. Технический прогресс

Нообудущее по Вернадскому

Ноологизмы Ноопарадигма Ноопрограммирование

Ноокомпьютинг

Ноомоделирование Ноологика Ноографика Ноотехнологии Ноонет (Ноосеть) Ноороботы

Ноокибернетика HOOCO

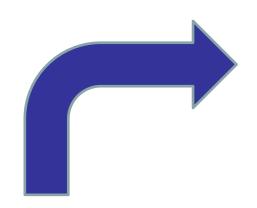
Нооэволюция

ноогенезис Ноогеография

Ноомодели

Ноопространство

Нообиблиотекм


Ноотехнократия Ноотенденции Ноообщество Ноокультура

Нооэкономика Нооритмы

Ноократия Нооэтика

> Нооцивилизация Ноополисы

Ноомоделирование Нооритмы ноографика Ноократия

Ноокосмология Нооэкономика нооцивилизация ноозв

Нооменеджмент Ноополис Ноогенезис но Нооинструменты Ноотенденц

Ноопроекты Нообиблиотека Ноомоде

Нооэтика

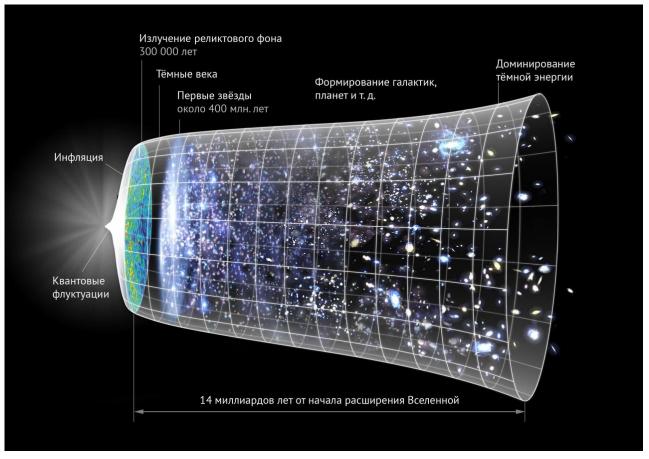
Ноогеография

Закон Мура в эволюции жизни...

Базовый период: **20 млрд лет**

Log10 размера генома (количество пар нуклеотидов)

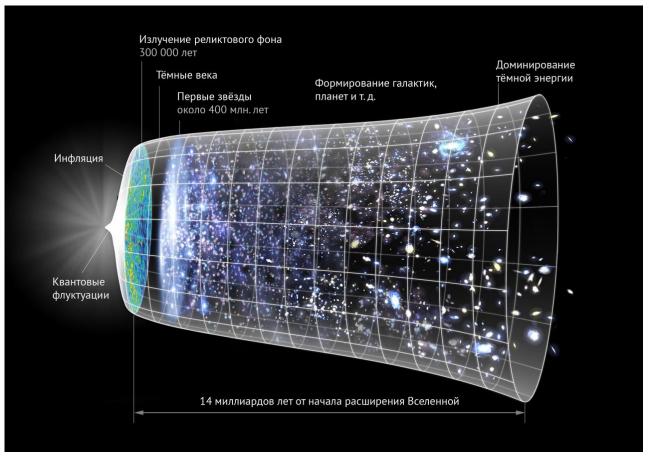
«Вначале было Слово…»


Некоторые следствия и выводы:

Гипотеза появления жизни в ранней Вселенной позволяет, в отличие от многих других теорий, проверить ее. Ведь, согласно представлениям Шарова – Гордона, на иных планетах и кометах, например на Марсе, на спутнике Сатурна Энцеладе и в других местах, где есть вода, возможно найти микроорганизмы, имеющие те же нуклеиновые носители информации (ДНК и РНК), что и земных организмов.

Кант: «Мир состоит из звезд и из людей»

Некоторые следствия и выводы:



Если происхождение жизни мы относим на 10 и даже больше миллиардов лет назад, то мы попадаем в другую Вселенную, которая только прошла стадию «темных времен», в которой начался процесс зарождения первых звезд! Т.е. звезды и жизнь появились одновременно!

Кант: «Мир состоит из звезд и из людей»

Некоторые следствия и выводы:

Сенсационный вывод: во Вселенной нет и не может быть никаких высокоразвитых цивилизаций просто потому, что жизнь вообще, во вселенском масштабе, только сейчас дошла до появления разума!

Один из признаков предстоящего прогресса: Стремительное нарастание объемов программистской работы

Операционная система Android: 12 миллионов строк кода Операционная система MS Windows 7: 50 миллионов строк кода

Современный автомобиль: **50 миллионов строк кода +** (почти половина стоимости: компьютерное оборудование и программное обеспечение)

World IPv6 Day June 8, 2011 **2011:** От Интернет (1 адрес на человека) к **Ноонет (до 300 млн сетевых адресов на человека**)

«Интернет вещей», «Индустрия 4.0», «Разумная среда», НООСФЕРА...

Могущество Человека произростать будет компьютерными технологиями!

Современный автомобиль: **50 миллионов строк кода +** (почти половина стоимости: компьютерное оборудование и программное обеспечение)

World IPv6 Day June 8, 2011

2011: От Интернет (1 адрес на человека) к **Ноонет (до 300 млн сетевых адресов на человека**)

«Интернет вещей», «Индустрия 4.0», «Разумная среда», НООСФЕРА...

Литература

- 1. Аноприенко А.Я. Пятая волна индустриализации и третья промышленная революция // Вестник Донецкого национального технического университета, №1 (1), 2016. С. 3-12.
- 2. Аноприенко А.Я. Закономерности развития компьютерных технологий и обобщенный закон Мура // Вестник Донецкого национального технического университета, №2 (2), 2016. С. 3-17.
- 3. Аноприенко А.Я. Периодическая система развития компьютерных систем и перспективы нанокомпьютеризации // Инновационные перспективы Донбасса: Материалы международной научно-практической конференции. Донецк, 20-22 мая 2015 г. Том 5. Компьютерные науки и технологии. Донецк: Донецкий национальный технический университет, 2015. С. 5-13.
- 4. Аноприенко А.Я., Литвиненко В.С. Четвертая индустриализация Донбасса // Инновационные перспективы Донбасса: Материалы международной научно-практической конференции. Донецк, 20-22 мая 2015 г. Пленарный доклад 21 мая 2015 г. Донецк: Донецкий национальный технический университет, 2015. 24 с.
- 5. Anoprienko A., Litvinenko V. Quatrième industrialisation du Donbass // Sans Frontieres. Juillet 2015. P. 4-7.
- 6. Аноприенко А.Я. Системодинамика ноотехносферы: основные закономерности // «Системный анализ в науках о природе и обществе». Донецк: ДонНТУ, 2014, №1(6)-2(7). С. 11-29.
- 7. Аноприенко А.Я. Четыре концепции будущего: «Зеленый рост», «Индустрия 4.0», нооинфраструктура и космоантропная перспектива // Донбасс-2020: Материалы VII научно-практической конференции. Донецк, 20-23 мая 2014 г. Донецк, Донецкий национальный технический университет, 2014. С. 6-11.
- 8. Аноприенко А.Я. Система закономерностей развития средств и методов компьютинга // Материалы V всеукраинской научнотехнической конференции «Информационные управляющие системы и компьютерный мониторинг (ИУС и КМ 2014)» 22-23 апреля 2014 г., Донецк, ДонНТУ, 2014. В 2-х томах. Т. 1. С. 11-23.
- 9. Аноприенко А.Я. Основные закономерности эволюции компьютерных систем и сетей / Научные труды Донецкого национального технического университета. Серия «Проблемы моделирования и автоматизации проектирования» (МАП-2013). Вып.1(12)-2(13): Донецк: ДонНТУ, 2013. С. 10–32.
- 10. Аноприенко А.Я. Модели эволюции компьютерных систем и средств компьютерного моделирования // Материалы пятой международной научно-технической конференции «Моделирование и компьютерная графика» 24-27 сентября 2013 года, Донецк, ДонНТУ, 2013. С. 403-423.
- 11. Аноприенко А.Я. Ноокомпьютинг // Материалы VI международной научно-технической конференции «Информатика и компьютерные технологии» 22-23 ноября 2011 г. Т. 1. Донецк, ДонНТУ. 2011. С. 10-23.
- 12. Аноприенко А.Я. Будущее компьютерных технологий в контексте технической и кодо-логической эволюции / Вестник Инженерной Академии Украины. Теоретический и научно-практический журнал Инженерной Академии Украины. Вып.3-4, 2011. С. 108-113.