Результаты получены при a = 0.75 м, $\omega = 10$ рад/с, $OO_1 = 1.5$ м.

Из приведенных графиков видно, что параметры объекта управления в процессе намотки изменяются в широких пределах, в том числе скачком. Данное обстоятельство необходимо учитывать при синтезе системы регулирования натяжения ленты.

Перечень ссылок

- 1. Иванов Г.М., Левин Г.М., Хуторецкий В.М. Автоматизированный многодвигательный электропривод постоянного тока—М.:Энергия, 1978. 160с.
- 2. Дружинин Н.Н. Непрерывные станы как объект автоматизации. М.: Металлургия, 1975. 336 с.
- 3. Ильина С.Т. Разработка и исследование системы автоматического регулирования натяжением основы на ткацких станках. Диссертация к.т.н. М.: 1973. 166 л.
- 4. Файнберг Ю.М. Авторегулирование при холодной прокатке. Харьков, 1960. 189 с.

УДК 621.313

ПРЕОБРАЗОВАТЕЛИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

Горозий Е.М., студент, Чашко М.В., к.т.н., доцент

(Донецкий национальный технический университет, г. Донецк, Украина)

Работа посвящена устройствам, преобразующим параметры электрической энергии. А к т у а л ь н о с т ь ее обусловлена возможностью снизить материалоемкость преобразователей и повысить их надежность.

Сущность дискретного преобразования энергии в том, что очередная порция энергии принимается от источника, запасается в электрическом или магнитном поле и передается в накопитель, который является выходным элементом преобразователя, так что выходная величина есть сумма порций энергии во времени, а не в пространстве.

Дискретный способ преобразования применяется в устройствах, называемых бестрансформаторными преобразователями [1, с.480-495]. Как правило, они используются в качестве источников вторичного питания. Появление мо

щных силовых ключей позволило применить дискретное преобразование в силовых электропередачах, например, [2].

Дискретное преобразование позволяет устранить магнитопровод и межвитковую изоляцию, снижая материалоемкость и повышая надежность устройства.

В настоящее время переменное напряжение преобразуется трансформаторами. Они содержат магнитопровод и обмотки, различающиеся числом витков. К первичной обмотке энергия подводится при каком-то напряжении, от вторичной обмотки та же энергия отбирается при напряжении, большем (меньшем) в коэффициент трансформации раз. Последний определяется соотношением витков первичной и вторичной обмоток. Ввод в трансформатор и вывод из него энергии происходит одновременно аналоговым (непрерывным) процессом.

Дискретный преобразователь организует процесс преобразования так, что от источника в преобразователь энергия поступает дискретно, порциями при напряжении источника. Каждая

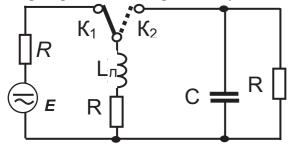


Рисунок 1 – Принципиальная схема

порция в течение запасается в электрическом или магнитном поле и выводится при напряжении, которое зависит от емкости элемента, в котором запасается энергия.

Схема преобразования представлена на рис.1. Устройство содержит источник питания \mathbf{E} , сопротивлением $\mathbf{R}_{\mathbf{u}}$, ключи \mathbf{K}_{1} и \mathbf{K}_{2} , которые попеременно соединяет индуктивность $\mathbf{L}_{\mathbf{J}}$ с источником питания \mathbf{E} и электрическим конденсатором \mathbf{C} , в электрическом поле которого

накапливается энергия, порциями поступающая от индуктивности $L_{\text{д}}$, нагрузка R_{H} , в которой электрическая энергия конденсатора преобразуется в другой вид.

Устройство работает следующим образом. Ключом K_1 индуктивность $L_{\rm Д}$ соединяется с источником питания E. Пока ключ K_1 замкнут, в магнитном поле индуктивности накапливается энергия. Затем размыкается K_1 , одновременно замыкается K_2 , энергия магнитного поля индуктивности $L_{\rm Д}$ преобразуется в энергию электрического поля конденсатора C. Эти операции повторяются периодически, так что в конденсаторе накапливается энергия, которая используется нагрузкой $R_{\rm H}$.

 Π р и постоянном напряжение. Напряжение на конденсаторе C возрастает, пока количество израсходованной за период энергии в нагрузке R_H станет равным количеству энергии, добавленной за период в конденсатор от индуктивности $L_{\rm Z}$. Количество накопленной в индуктивности энергии в течение замкнутого состояния ключа K_1

$$W_{L,I} = \frac{L_{I}I_{I}^{2}}{2}, \quad I_{I} \cong \frac{E}{L}t_{1}, \qquad W_{L,I} \cong \frac{E^{2}t_{1}^{2}}{2L_{II}}.$$
 (1), (2), (3)

Количество энергии в конденсаторе при подключении к нему индуктивности ключом K_2

$$\Delta W_C = \frac{C}{2} (u_K^2 - u_H^2) = C U_{CP} \Delta u. \tag{4}$$

где $u_{\rm H}$ и $u_{\rm K}$ – напряжение на конденсаторе в моменты замыкания и размыкания ключа ${\bf K}_2$. Количество энергии, переданной в нагрузку за один период работы ключей,

$$\Delta W_H = \frac{U_{CP}^2}{R_H} T \,, \tag{5}$$

где U_{CP} – среднее за период напряжение на конденсаторе, T – период работы ключей, R_H – сопротивление нагрузки.

Когда U_{CP} = const, $\Delta W_C = \Delta W_H$, из соотношений (4) и (5) следует

$$\Delta u = \frac{U_{CP}}{CR_H}T \ . \tag{6}$$

В первом приближении принимается, что вся энергия, накопленная в индуктивности перешла в емкость (незначимы потери при коммутации K_1 и на сопротивлении $R_{\rm A}$), так что $W_{L\!\!/\!\!1} = \Delta W_C$.

Тогда из уравнений (3) и (5) следует

$$\frac{E^2 t_1^2}{2L_{\mathcal{I}}} = C U_{CP} \Delta u . \tag{7}$$

Решением системы уравнений (6) и (7) определено

$$U_{CP} = Et_1 \sqrt{\frac{R_H}{2L_{\mathcal{I}}T}} , \qquad \Delta u = \frac{Et_1}{C} \sqrt{\frac{T}{2R_H L_{\mathcal{I}}}} .$$
 (8)

Коэффициент пульсаций

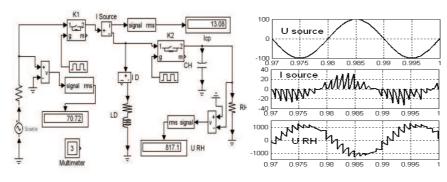


Рисунок 2 — Моделирование преобразования: а — Simulink модель; б — осциллограммы

$$k_{II} = \frac{\Delta u}{2U_{CP}} = \frac{T}{2CR_H} \ . \tag{9}$$

При переменном напряжении ЭДС E изменяется синусоидально $e=E_m \sin \Omega t$, где $\Omega=2\pi f$, f- частота преобразуемого напряжения.

Использовано выражение для напряжения на конденсаторе при включении контура на гармоническое

напряжение [3, с. 56]. В результате получено выражение для действующего значения выходного напряжения:

$$U_{\mathcal{I}} \cong E_m t_1 \sqrt{\frac{R_H}{2L_{\mathcal{I}} T (1 + \mathbf{\Omega}^2 R_H^2 C^2)}} . \tag{10}$$

Адекватность ключевых зависимостей (8) и (10) была проверена моделированием в программе Simulink. Модель преобразователя представлена на рис. 2, а. В эксперименте варьировались $L_{\rm J}$, C. $R_{\rm H}$, $t_{\rm 1}$, T. осциллограммы входных напряжения и тока и выходного напряжения представлены на рис. 2, б.

Из осциллограмм видно, что на выходе напряжение имеет ту же частоту, что и на входе, сдвинуто по фазе на 180° и по амплитуде приблизительно в 10 раз больше входного. Видны пульсации выходного напряжения. Обработкой результатов эксперимента установлено, что экспериментальные значения коррелируются с теоретическими с коэффициентом корреляции 0.87-0.98. Это позволяет считать теоретические зависимости адекватными.

В ы в о д ы . Возможно трансформировать напряжение, суммируя последовательные порции энергии. Коэффициенты трансформации и пульсации выходного напряжения могут изменяться вариацией значений индуктивности и емкости. Жесткость внешних характеристик должна быть скорректирована обратной связью по периоду или длительности замкнутого состояния входного ключа.

Перечень ссылок

- 1. Справочник по электротехнике, т. 2, 1998.
- 2. Зиновьев Г.С., Левин Е.Ю., Обухов А.Е., Попов В.И., Повышающе-понижающие регуляторы переменного напряжения и непосредственные преобразователи частоты. Электротехника, №11, 2000,c.16-20.
- 3. Гинсбург С.Г. Методы решения задач по переходным процессам в электрических цепях. М.: «Высшая школа», 1967, 388 с.

УДК 636.082.474:536.58

УПРАВЛЯЮЩИЕ УСТРОЙСТВА ДЛЯ СИСТЕМ ОБЕСПЕЧЕНИЯ НЕСТАЦИОНАРНЫХ ТЕМПЕРАТУРНЫХ РЕЖИМОВ ИНКУБАЦИИ

Гветадзе С.В., ассистент; Фандеев Е.И., профессор, д.т.н.

(Южно-Российский государственный технический университет, г. Новочеркасск, Россия)

Для реализации предложенных нестационарных температурных режимов инкубации [1] необходима разработка соответствующих управляющих устройств. Используемые в настоящее время средства контроля и управления применяются только для стационарных температурных режимов. В докладе рассматриваются специальные устройства обеспечения переменного температурного режима инкубации [2,3], включающие в себя таймер и реле, отличающиеся от известных аналогов тем, что с целью ограничения пределов максимального и минимального значений переменных температур воздуха в инкубационном шкафу, они содержат добавочный термостабильный резистор, периодически с помощью контакта реле включаемый параллельно (или последовательно) со штатным термопреобразователем сопротивления (ТС) терморегулятора инкубатора. При этом обе схемы включения указанного добавочного резистора дают практически одинаковый эффект и различаются лишь значением его сопротивления. Рассмотрим структуру и принцип работы предлагаемого устройства для обеспечения нестационарного температурного режима, например, при параллельном подключении терморезистора.

Устройство содержит специальный таймер, реле с контактом K и добавочный термонезависимый резистор $R_{\rm Z}$, подсоединяемый к TC инкубатора (рис. 1, a). Пусть при разомкнутом контакте K штатный терморегулятор настроен на значение сопротивления TC,