УДК 622.24

В. С. Блохин, А. И. Политучий, А. А. Пащенко

ГВУЗ «Национальный горный университет», Днепропетровск, Украина

Интенсификация строительства глубоких нефтегазовых скважин

Рассмотрено напряженное состояние изотропного, упруго-пластического массива вблизи круговой цилиндрической выработки конечной глубины, выполненной в этом массиве.

Ключевые слова: нефтегазовые скважины, массив породы, поле напряжений в приствольной зоне.

Введение

Успешность освоения и эксплуатации нефтегазовых скважин, а также разведки месторождений нефти и газа в значительной мере определяется эффективностью строительства скважин. А в связи с ростом глубин и многообразием горно-геологических условий бурения возрастает актуальность проблемы обеспечения устойчивого состояния их необсаженного ствола. Так как эффективность бурения таких скважин во многом зависит от состояния и устойчивости горных пород их ствола и приствольной зоны. Обеспечение длительной устойчивости пород в этих условиях возможно лишь при всестороннем изучении и понимании сложных процессов, происходящих в горных породах под действием различного сочетания значительных напряжений, роли гравитационного (P_1) , бокового геостатического (P_2) и противодавления скважины (P_1) .

Цель работы

Рассмотрение напряженного состояния изотропного, упруго-пластического массива вблизи круговой цилиндрической выработки конечной глубины, выполненной в этом массиве

Основной материал

Давление, испытываемое массивом со стороны ствола скважины, складывается из гидростатического давления столба бурового раствора и гидродинамического давления, обусловленого проведением технологических процессов в скважине. Гидродинамическое давление (как правило, на порядок меньше гидростатического) играет подчиненную роль в возникновении деформаций ствола, ускоряя время наступления разрушений, т. е. служит поводом, а не причиной. Определяющими являются давления P_2 , P_1 , P_{Γ} [4, 5]. Традиционно условие задачи формулируется следующим образом. Имеется тяжелый массив, ограниченный сверху горизонтальной плоскостью, от плоскости в глубь массива идет вертикальная скважина. Упругий массив находится в равновесии под действием собственного веса, иных усилий к массиву не приложено. Требуется найти напряжения в таком ослабленном скважиной массиве. Вместо упругого полупространства с цилиндрической скважиной конечной глубины обычно рассматривается цилиндр радиуса г₂ с вертикальной полостью г₁. Влияние торцевых эффектов (устье и забой скважины) не учитывается, поскольку глубина скважины во много раз превышает ее диаметр. В результате устанавливается зависимость нормальных напряжений σ_r , σ_t и перемещений u от радиусов цилиндра r_1 , r_2 при удовлетворении уравнениям и условиям задачи на поверхностях, ограничивающих массив, кроме того, напряжения и смещения должны быть неразрывными и однозначными функциями r и z внутри массива.

Нами решалась задача в следующей постановке [1, 3] исследовалось напряженное состояние изотропного, упруго-пластического массива вблизи круговой цилиндрической выработки конечной глубины, выполненной в этом массиве. Рассматривался элементарный участок (элемент) глубокой скважины, как элемент с отверстием постоянного сечения радиусом r_1 , нагруженным внутренним давлением P_1 , постоянной толщины и наружным радиусом r_2 , нагруженным внешним давлением P_2 . При решении исследовалась математическая модель,

включающая уравнения равновесия, зависимости между компонентами деформаций и компонентами перемещений, уравнения, описывающие свойства среды, интенсивности напряжений и интенсивности деформаций, а также граничные условия: по стенкам скважины равномерно распределены напряжения $\sigma_r = -P_1$; на границе упругих и неупругих деформации массива (при $r = r_c$) соблюдается неразрывность значений напряжений и деформаций $\sigma_r^{\, nn} = \sigma_r^{\, yn}$; $\sigma_t^{\, nn} = \sigma_t^{\, yn}$; $\sigma_t^{\, nn} = \sigma_r^{\, yn} + \sigma_t^{\, nn} = \sigma_r^{\, yn}$, а в рассматриваемом массиве (при $r \ge r_2$) $\sigma_r = -P_1(-P_2)$.

В связи с особенностями задачи, рассматривается упруго-пластический массив со скважиной, в приствольной зоне которого вблизи скважины могут иметь место пластические, упруго-пластические и упругие деформации. В соответствии с этим исследованы: пластическая и упругая зоны нагруженного массива с вертикальной скважиной (рис.1).

Задача в рассматриваемой постановке осесимметрична, следовательно, деформационные перемещения в полупространстве с вертикальной цилиндрической круговой выработкой имеют место только в плоскостях, проходящих через ось симметрии выработки. Во всех таких плоскостях распределение деформации и напряжений будет одинаковым. Это условие позволяет свести решение объемной задачи к изучению распределения деформаций и напряжений в одной плоскости, проходящей через ось симметрии скважины.

Для решения задачи были приняты: в качестве исходного - уравнение равновесия элементарного объема в текущей системе координат

$$r\frac{d\sigma_r}{dr} + \sigma_r - \sigma_t = \mathbf{0} \tag{1}$$

и условие возникновения пластических деформаций пород с учетом известного положения

$$\sqrt{\sigma_t^2 + \sigma_r^2 - \sigma_t \sigma_r} = \sigma_T$$

«результатом действия длительной нагрузки являются необратимые деформации горных пород без нарушения их сплошности и сцепления сцементированного скелета»). Интенсивность напряжений (исходя из условия пластичности Мизеса) – обобщенное условие пластичности будет:

$$[\sigma_{l_{\rm T}}] - \frac{1}{2} \sqrt{(\sigma_r - \sigma_z)^2 + (\sigma_z - \sigma_t)^2 + (\sigma_r - \sigma_t)^2} = \sigma_{l \text{ pacter}}, \tag{2}$$

где $\sigma_{ipacчет}$ — расчетное значение напряжения σ_{i} ; $[\sigma_{ir}]$ — интенсивность напряжений, при которых в породах массива на исследуемой глубине скважины появляются пластические деформации.

Напряжения в пластической зоне. Используя известный прием, для тождественного удовлетворения (2) введем вспомогательную функцию некоторого угла φ (от безразмерного радиуса q), тогда компоненты тензора напряжений σ_r и σ_t в пластической области будут:

$$\sigma_t = 2(3)^{-\frac{1}{2}}\sigma_T \cos\left(\varphi - \frac{\pi}{6}\right); \quad \sigma_\varphi = 2(3)^{-\frac{1}{2}}\sigma_T \cos\left(\varphi + \frac{\pi}{6}\right); \tag{3}$$

после подстановки этих выражений в уравнение (1) и ввода безразмерных радиусов:

$$q = {}^{r} h_{1}, \beta = {}^{r_{2}} h_{1}, \alpha = {}^{r_{3}} h_{1}, \qquad (4)$$

получим дифференциальное уравнение для функции 🌳

$$q\frac{d\varphi}{dq} + \frac{\sin\varphi}{\sin(\varphi + \pi/6)} = 0$$
(5)

После интегрирований получим, $q = \frac{C}{\frac{\sqrt{3}}{e^{\frac{2}{2}} \varphi \sqrt{\sin \varphi}}}$

Для нахождения константы C использованы граничные условия по внутреннему радиусу r_1 , где: $r=r_1$; q=1 и $\phi=\phi_i$. Тогда . C учетом найденного значения C зависимость для q будет

$$q = e^{\frac{\sqrt{3}}{2}(\varphi_1 - \varphi)} \sqrt{\frac{\sin \varphi_1}{\sin \varphi}}$$
(6)

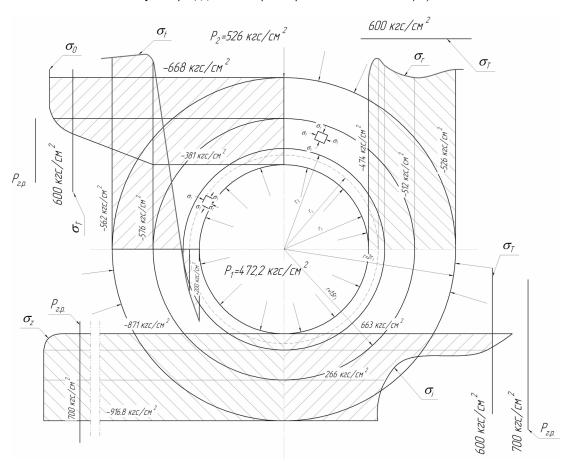


Рис. 1. Распределение напряжений по сечению скважины $\varnothing 215,9$ мм на глубине 3935 м (σ_r – только сжимающие, а σ_τ – изменяются от сжимающих σ_t = -562 кг/см 2 в массиве до растягивающих σ_τ = +200 кг/см 2 на стенках скважины, т.е. имеют место пластические, упругопластические и упругие деформации).

Рассматривая те же краевые условия, но на границе упругой и пластической областей, где: $r = r_c$; $q = \beta$ и $\varphi = \varphi_c$, из предыдущего выражения получим

$$\beta = e^{\frac{\sqrt{2}}{2} \left(\varphi_1 - \varphi_C \right)} \sqrt{\frac{\sin \varphi_1}{\sin \varphi_C}}$$
(7)

Используя уравнения (3), с учетом граничных условий зависимости (6) (при $r=r_1;\ q=1$ и $\sigma_r=-P_1$), получим выражение для определения функции φ_1

$$-P_1 = \frac{2}{\sqrt{3}}\sigma_{\rm T}\cos\left(\varphi_1 + \frac{\pi}{6}\right);\tag{8}$$

Установленные зависимости (3), (6) и (2) позволяют выполнить расчет (найти значения радиального σ_{r} и окружного σ_{e} напряжений в пластической области приствольной части массива.

Напряжения в упругой зоне. Формулы для расчета напряжений в упругой области, с учетом известных положений [1, 6] представим в следующем виде:

$$\sigma_t = \frac{2}{\sqrt{3}} \sigma_T \left(C_1 + \frac{C_2}{q_2} \right) \quad \sigma_r = \frac{2}{\sqrt{3}} \sigma_T \left(C_1 \quad \frac{C_2}{q_2} \right) \tag{9}$$

Принимая во внимание условие непрерывности напряжений на границе упругой и пластической областей, где $\varphi = \varphi$ с и $q = \beta$ из уравнений (3) и (9) получим:

$$cos\left(\varphi_{\mathbf{C}} - \frac{\pi}{6}\right) = \mathbf{C}_1 + \mathbf{C}_2\beta^{-2} \quad cos\left(\varphi_{\mathbf{C}} + \frac{\pi}{6}\right) = \mathbf{C}_1 - \mathbf{C}_2\beta^{-2}$$

ISSN 2073-9575. Наукові праці ДонНТУ. Серія: «Гірничо-геологічна». №2(17)' 2012. С. 205–211.

Тогда:
$$C_1=rac{\sqrt{3}}{2}\cos arphi_c$$
 и $C_2=rac{eta^2}{2}\sin arphi_c$

Подставив эти значения в уравнения (9), получим зависимости для нахождения радиальных и окружных напряжений в упругой области упругопластической зоны деформации пород вблизи ствола скважины:

$$\sigma_{c} = \sigma_{T} \left(\cos \varphi_{\sigma} + \frac{\beta^{2} \sin \varphi_{C}}{\sqrt{3} q^{2}} \right) \quad \sigma_{r} = \sigma_{T} \left(\cos \varphi_{\sigma} - \frac{\beta^{2} \sin \varphi_{C}}{\sqrt{3} q^{2}} \right) \quad (10)$$

С использованием полученных уравнений и краевых условий задачи (при : $r = r_2$; $q = \alpha$ и $\sigma_r = -P_2$), найдем зависимость для определения функции φ_x :

$$-\frac{P_2}{\sigma_T} = \cos\varphi_C - \frac{e^{\sqrt{3}(\varphi_1 - \varphi_C)}\sin\varphi_1}{\alpha^2\sqrt{3}};$$
(11)

Радиальные перемещения U. Решение задачи выполнено с использованием допущения теории пластичности о несжимаемости материала как за пределами, так и в пределах упругости. Для установления радиального перемещения в пластической области использована зависимость деформаций от напряжений за пределами упругости при двухосном напряженном состоянии несжимаемого материала [2, 4]:

$$\varepsilon_t = \frac{\varepsilon_i}{2\sigma_t} (2\sigma_t - \sigma_r)_i \quad \varepsilon_r = \frac{\varepsilon_i}{2\sigma_t} (2\sigma_r - \sigma_t), \tag{12}$$

где \mathcal{E}_t и \mathcal{E}_r - сооветственно окружная и радиальная относительная деформация, а \mathcal{E}_i -

интенсивность деформации,
$$\varepsilon_t = \frac{2}{\sqrt{3}} \sqrt{\varepsilon_t^2 + \varepsilon_r^2 + \varepsilon_t \varepsilon_r}$$

Поделив 👣 на 🛂, получим:

$$\varepsilon_r \varepsilon_t^{-1} = (2\sigma_r - \sigma_t)(2\sigma_t - \sigma_r)^{-1}$$
(13)

Окружная ε_t и радиальная ε_r деформации связаны с радиальными перемещениями U зависимостями:

$$\varepsilon_t = \frac{U}{r}_{\text{M}} \varepsilon_r = \frac{dU}{dr} \tag{14}$$

Подставив полученные значения (14), выражение (13) запишем в виде

$$\frac{dU}{u} = \frac{2\sigma_r - \sigma_c}{2\sigma_c - \sigma_r} \frac{dq}{q} \tag{15}$$

Продифференцировав q из (6), будет

$$\frac{dq}{q} = -\frac{1}{2}(\sqrt{3} + ctg\varphi)d\varphi \tag{16}$$

С использованием уравнений (3), (16) и (15), получим

$$du \cdot u^{-1} = sin\left(\varphi - \frac{\pi}{6}\right)d\varphi(sin\varphi)^{-1}$$

Проинтегрировав последнее выражение, получим уравнение для определения радиального перемещения в пластической зоне

$$u(r_1)^{-1} = \sigma_T (2E)^{-1} C_2 e^{\frac{\sqrt{3}}{2} \varphi} (stn\varphi)^{-\frac{1}{2}},$$
 (17)

где Е – модуль упругости пород рассматриваемого пласта стенок скважин.

Учитывая соотношения (14), формулу для нахождения радиального перемещения в упругой зоне для несжимаемого материала с использованием закона Гука, представим в следующем виде:

$$U = \varepsilon_t r = \frac{r_1}{2E} (2\sigma_t - \sigma_r)q$$

После подстановки в полученное выражение значений σ_r и σ_t уравнения (10), получим зависимость для радиальных перемещений в упругой области упруго-пластической деформации приствольной зоны скважины

$$U = \frac{\sigma_{\mathsf{T}} n_{\mathsf{I}}}{2E} \left(q \cos \varphi_{\mathsf{C}} + \frac{\sqrt{3} \beta^2 \sin \varphi_{\mathsf{C}}}{q} \right) \tag{18}$$

Из условия равенства радиальных перемещений на границе пластической и упругой областей находится постоянная интегрирования C_3 . Для этого необходимо приравнять радиальные перемещения по формулам (18) и (17) при соблюдении $q = \beta$ и $\varphi = \varphi_{\sigma}$, тогда

$$C_3 = 2\beta\sqrt{\sin\varphi_c}\sin\left(\varphi_c + \frac{\pi}{6}\right)\left(e^{\frac{\sqrt{3}}{2}\varphi_c}\right)^{-1}$$

После подстановки значения C_3 в уравнение (17) получим формулу для радиальных перемещений в пластической области упруго-пластической зоны деформаций

$$U = \frac{\sigma_{\mathbf{T}} r_{\mathbf{L}}}{E} \beta e^{\frac{\sqrt{6}}{2} (\varphi - \varphi_{\mathbf{C}})} \sqrt{\frac{\sin \varphi_{\sigma}}{\sin \varphi}} \sin \left(\varphi_{\sigma} + \frac{\pi}{6} \right)$$
(19)

Порядок расчета. Исходными данными для расчета являются: механические свойства горных пород (${}^{\mathbf{G}}\mathbf{r}$ - предел текучести, E - модуль упругости, μ - коэффициент Пуассона, γ - плотность пород), размеры скважины, пласта и глубина его залегания, величина геостатического P_r и бокового P_2 давления, давление в скважине P_1 (γ_p - удельный вес бурового раствора). По уравнениям (8) и (11) находятся функции \mathcal{P}_1 и \mathcal{P}_c затем по (7) и (11) находятся безразмерные радиусы β и α , напряжения в пластической области подсчитываются по уравнениям (3), а в упругой - по формулам (10). Радиальные перемещения в пластической и упругой областях определяются соответственно по уравнениям (19) и (18).

Поле напряжений, образующееся в приствольной зоне, отличается от первоначального концентрацией напряжений у стенок скважины, вследствие чего происходят упругие и неупругие перемещения горных пород. Изложенный метод справедлив только в случае наличия последних, в других случаях оценку напряженно-деформированного состояния пород можно выполнять с использованием следующих уравнений:

$$\sigma_{t} = \frac{P_{1} - P_{2}\alpha^{2}}{\alpha^{2} - 1} + \frac{(P_{1} - P_{2})\alpha^{2}}{(\alpha^{2} - 1)q^{2}}; \quad \sigma_{r} = \frac{P_{1} - P_{2}\alpha^{2}}{\alpha^{2} - 1} - \frac{(P_{1} - P_{2})\alpha^{2}}{(\alpha^{2} - 1)q^{2}}; \quad (20)$$

$$u = \frac{\eta_{1}}{E(\alpha^{2} - 1)} [(1 + \mu)(P_{1} - P_{2})\alpha^{2} + (1 - \mu)(P_{1} - P_{2}\alpha^{2})q^{2}] \frac{1}{q}$$

Данные зависимости позволяют на достаточной (для инженерной практики) точности выполнить оценку напряженно-деформированного состояния ствола глубокой скважины, в частности, требования по его устойчивости. Необходимо иметь ввиду - ликвидировать начавшуюся неупругую деформацию стенок скважины очень трудно, а иногда остановить бывает невозможно. Гораздо эффективнее в подобных случаях предупредить возможность нарушения целостности массива, и для этого необходимо предварительно установить его напряженное состояние (рис. 2).

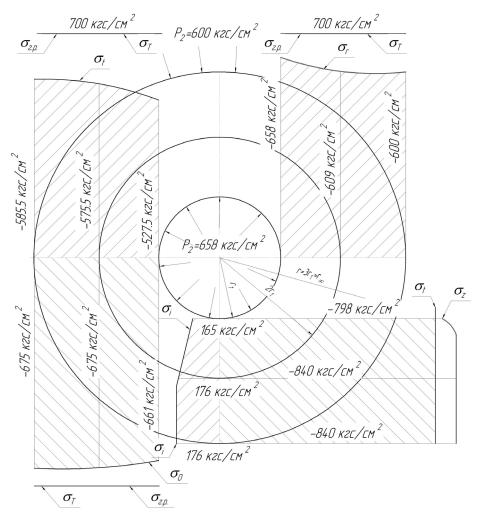


Рис. 2. Эпюры распределения напряжений по сечению скважины Ø215,9 мм на глубине 3610 м (все напряжения сжимающие, т.е. имеет место квазиравновесное напряженное состояние).

Выводы

Таким образом, для обеспечения снижения материальных и трудовых затрат при обустройстве нефтегазовых месторождений необходимо учитывать состояние горных пород, обусловленное действием гравитационных, тектонических сил и сил, возникших в результате проведения скважины [1-3].

Библиографический список

- 1. Критерии устойчивости карбонатных и терригенных отложений в глубоких скважинах / [В.С. Блохин, В.В. Ипполитов, В.Д. Терентьев, Ф.К. Гимадеева] // Повышение эффективности бурения глубоких скважин в аномальных геологических условиях: Сб. Оренбург: ЦНТИ, 1983. 44 с.
- 2. Блохин В.С. Динамика напряженно-деформированного состояния приствольной зоны глубокой скважины и ее характеристика / В.С. Блохин, Н.П. Нестеренко // Всеукраинский фестиваль науки: Тез. конф. Полтава: ПолтНТУ, 2011.
- 3. Блохин В.С. Метод расчета ствола глубокой скважины / В.С. Блохин, Н.П. Нестеренко, В.Н. Орловский // Всеукраинский фестиваль науки: Тез. конф. Полтава: ПолтНТУ, 2011.
- 4. Механика горных пород применительно к проблемам разведки и добычи нефти: сб.науч.тр. /под ред. В.Мори и Д.Фурментро. М.:Мир, 1994.
- 5. Мирзаджанзаде А.Ф. Физика нефтяного и газового пласта / А.Ф. Мирзаджанзаде, И.М. Ахметов, А.Г. Ковалев. Москва Ижевск: Инст. Компьютерных исследований, 2005.
- 6. Тимошенко С.П. Теория упругости / С.П. Тимошенко, Д. Гудьер. М: Наука, 1979. 576 с.

Надійшла до редакції 14.12.2012

В. С. Блохін, А. І. Політучий, А. А. Пащенко

ДВНЗ «Національний гірничий університет», Дніпропетровськ, Україна

Інтенсифікація будівництва глибоких нафтогазових свердловин

Розглянуто напружений стан ізотропного, пружно-пластичного масиву поблизу кругової циліндричної виробки кінцевої глибини, виконаної в цьому масиві.

Ключові слова: нафтогазові свердловини, масив породи, поле напруги в пристволовій зоні.

V. Blokhin, A. Polituchiy, A. Paschenko

National Mining University, Dnipropetrovsk, Ukraine

Intensification of Deep Oil And Gas Wells Development

The article considers the tense state of isotropic, resiliently-plastic massif near a circular cylindrical working.

Key words: oil and gas wells, rock, field of tensions.