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Abstract

Romanuke V. V. Module for Computing the Functional Integral over Nonnegative Frontier of
the Null Center Unit Ball. There has been stated a problem of finding the functional integral over
nonnegative frontier of the null center unit ball, being the set of all the possible probability density
distribution functions. The suggested method of computing such functional integral has been based
on congtructing its integral sum after breaking the space-time discretization grid and
differentiating the elements of the functional set by the distance between their sorted norms. The
developed in MATLAB module works with the preloaded set of the space-time quantized functions

and the parameter of norming them.

Foresay and problem headline

Functional integration takes its leading
positions in the math apparatus of the theoretical
nuclear physics, including quantum theory [1 — 7].
And functional (or continual) integrals were adjusted
for the control theory, where in the phase space there
may be needful to obtain the sum of al the
trajectories, which allow for the phase point to get of
the initial position and come into the terminal
position [1, 2, 4, 7, 8]. However, the functional
integration may be applied practically not only
within the nuclear quantum physics or control
theory. Within antagonistic game theory there [9,
10] had been stated a problem of finding the global
aftermath for a player by its selecting the pure or
mixed strategy, when the other player makes its
selection whatever. This globa aftermath lies in
finding the specific sum from the double integrals

[[p0aan (x y)ay=(p(9.a(y)).

taken over the whole set of the probability density
distribution functions p(x) or q(y), defined on the

Borelean subsets X or Y of R, where xe X and
ye Y are the pure strategies of the first and second
players correspondingly, and surface K(x, y) isthe

game kernel, defined on X xY < R*. Certainly, for
preventing the infinity, each component of such sum
must be multiplied by some infinitesimal, that is by
the differential of the probability density distribution

function, being here p(x) or q(y). So, the
problem headlineisto find the integral
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for having the first player global aftermath by its
selecting the strategy p(x), and (or) the integral

f(”ﬁ (x. y)dxdy]d[ (x)]=

(P(X), a(»))d[p(x)]

9”
for the second player globa aftermath by its

selecting the strategy q(y), where & and & are
the sets of al the possible probability density
distribution  functions  p(x) and  q(y)

correspondingly. Speaking generally, there is the
problem to find the functional integral of the type

©)

()_[ “w[f(t),t]dt]d[f(;)] @
taken over the set
{/()eLy(T): /()>0V 1T <R}N
ﬂ{f(f)eh T): ff(t)dle}:
= cB[O,l]Tc Ly(T), (5)

having coincided with the nonnegative frontier of
the null center f (t)=0 unit ball [11, 12].

Analysis of known origins on functional
integration

Some anaytical ways of finding the
functional integral were discussed in [8, 13 — 15],
though there had been investigated a separate class
of functional integrals on Wiener or Gaussian
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measure, and also on conditional Wiener measure
with the weight [16, 17]. Various humerical methods
from [8, 18] allow to take wider class of functional
integrals, but they somehow or other are related to
probability measures with predetermined correlation
functions. But the common widespread technique in
the numerical way is the space-time discretization,
approximately substituting the continual integration
with the finite number of ordinary Riemannian
integrals by applying the Monte-Carlo method [18],
though there are huge time resources spendings [18,
19]. Another way for executing the functional
integration is constructing the approximate formulas,
turning to the exact statements on the determined
class of functionals, where [18, 19], particularly, for
the continual integrals over Gaussian measures there
had been got new approximate formulas, turned out
to be exact on the class of functional polynomials of
any power. The obtained formulas in the particular
case of the conditional Wiener measure [18, 20] had
been used for caculating some vaues in the
Euclidean quantum mechanics with approximate
computation of the Feynman integrals without time
discretization, where quadrature formulas brought
the time saving and desired precision. Furthermore,
there in [18] had been obtained the approximate
formulas for multiple continual integrals over
conditional Wiener measure with the weight, where
aso investigated the measure of the continual
integration within the two-dimensional Euclidean
quantum field theory with polynomial interactions of
boson fields [4, 6, 7, 19]. Nevertheless, there have
not been exposed the origins, where the proposed
ways of numerical functional integration computing
would have been implemented within some math
program environment [18, 19]. Moreover, the
integral (4), even not regarding its simplicity, has
not been programmatically implemented until now.

Paper line destination and main points

In the initial approximation, while integrating
(4), the Borelean subset T < R may be predefined
as the unit segment [0;1]. Then this paper line

destination is to develop the program module for
computing the functional integral (4) by T =[0;1].

For this the following points should be accomplished
successively. Firstly, there should be stated properly

and digitized the differential d[ f(t)] within
B[0,1]. Secondly, there should be stated and

digitized the integral sum for the functional integral
(4). And thirdly, that actually must be accomplished
primarily, the number of the integra sum
components is defined by the spacetime
discretization grid and its structure along the space
dimension. At last, those digitally stated categories
will be typed accordingly within the powerful math
environment MATLAB for running the module for
digital functional integration from the MATLAB
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Command Window line.

Breaking the space-time into grid

Before digitizing the set (5) from the infinite
number of functions of the half-ball frontier towards
the finite number of the time-sampled staircase
functions [18], each function f(t)ee%' is going to
be essentially sampled. For this the unit segment
[0;1] isdividedinto N equal segments

Itat]) = {% ; 'ﬁ}}Nl (6)

by as great N as needful or possible (that depends
on the computation resources, duration resources or
on al taken together). Then the time differential in
the functional-integrand of (4) is

i i-1 1

dt=t -t , =———"=— 7
i i-1 N N N ( )
approximately by
m%((ti —t,)—0. (8)
N-se

So, the integrand of the functional in (4) on the
segment [t,_; t ] is

v f),t]=y[f(t).t] Vi=LN.
Then the functional-integrand of (4) is

Iw[f (1), t]dt:ZN:q,[f (1), 8]0t 1) =
:i‘”[f (ti)vti]%zﬁiw[f (ti)vti:|=
1 i i
Tg“’[f[ﬁj’ﬂ-

Going further, suppose, that the time-sampled
function f(r)ec# has M quantization levels.

First of themisthat f(t)=0. About the rest of the

M —1 quantization levels there is the lemma.
Lemma 1. If the time-sampled function

f(t)ec# has M equidistant quantization levels,
starting with the zeroth, then on the m-th
quantization level, if only f(t)=0 there,

9

(10)

f(t):(m-l)MLl, m=1 M.

(11)

Proof. Let f(t) correspond to the unit
probability in the point t=t. Then it is the Dirac

1

function: f(t)=38(t—1) and IS(t—t)dtzl. But
0

with (10) there should be

].S(t -1)dt = is(ti —T)(t —t,)=
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1% N
=NZ“6(ti ~t)=lbyteft}’,, (12
what means that 8(t —t)=N by t=t or even

Ve[t t] and 8(t-1)=0 Vrte[t;t]. So,
on the last M -th quantization level f(t)=0 or
f(t)=
guantized function f (t)eg% . If those quantization

levels are equidistant, then the difference between

_O=L. And on
M-1 M-1

the m-th quantization level, m=1, M ,

N and this is the maximal vaue of the

two neighboring levels is

if only

f(t)=0 there, f(t):(m—l)MLl. The lemma

has been proved.

Note, that here, as a corollary, the space-time
quantized function f(1)ec# may be better
represented in the form of the discrete probability

distribution.
Theorem 1. For the time-sampled function

f(t)es# with M equidistant quantization levels,
starting with zeroth, the probability B =P([t,_;; t])

f(t,
on the segment [t ,;t] is found as % and
pefo g}
M -1
Proof. Itisjust
P=P([tt] If t)dt = J'f
' f(t
=10 for=r) )= g
t\fl

And as on the m-th quantization level the value

f(t)e {o, (m-1)—

N then Re O,m—_1 on
-1 M-1

thislevel. The theorem has been proved.

The set of the space-time quantized functions
f(t)e<# may be accumulated with the MATLAB
script “genera_ri_N10" (figure 1) through the
corresponding discrete probability distributions,
presented for N =10 and M =17. For the greater
N and M thiscode is obviously added with proper
nested loops.

However, the number of the space-time
quantized probability density distribution functions
f (t) e % isnot strictly determined by the integers

N and M. It is determined by some operation,
alowing to discriminate each couple of probability
density distribution functions. Such operation runs

with differentiating the function f(¢)e ¢#

65

Digitized differential d[ f(t)]

One of the simplest ways to define the
differential over the functional set is to line up the
sampled elements of this set in the ascending order.
After such conversion from the functional set into
some compact closed subset of R thereisthe single
way to define the differential as the difference
between the current and foregoing element, where
module is not yet needed due to the ascending order.

The conversion of the function f(1)e<# to some

nonnegative value here cannot be ruled over the
norm in the space L, [0; 1] as then there would be

the same norm value for any function f(¢)ec7 .

Then it should be accepted the norm of the space
L, [0;1] by B>1. And then

(14)

However, it is easy to demonstrate that by
B>1 the integral (14) turns to infinity for

f(t)=3(t—1). Then it will be natural to redefine

the norm (14) as
U[f(r)T dt]ﬁ
|7 ()= : =

1
B
"(’)Eﬁcr]g[%ﬁlcln[o; 1][ J[f(t)} dt]
1

=
(N®)?

Suppose, that after getting the norm (15),

there are the K gpace-time quantized functions

fi(t)esF | aranged as {fk(t)}::1 in ascending

order of their norms (15). Then the differential
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clear, cle, Led0q29ft: Q= geeaail,10):

Hogeid: gi = Oz off = Op o » O i = 02 g5 = O0p g = 0 7 = 0 g5 = 0; @ = O gili = O ked;
for gled:ifM_g:1
e =0 g2 = O g = 05 gid = 0; qf = O g7 = 0 gl = 0; gf = 97

gl +q0 + gl 4t S gl bl 47 490 4+ g7 2 1+ le-15
for qi=0: 1AM gl
qF =07 g4 =00 g5 =0 gf =0 g7 =~ OF q@ = 04 g = Oz
ifql+agf +q3 +q@d +05 +a6+ a7 + @@ 8 9= L+ L=-15
for oi=0rifKH_qid
ol = 0r g3 om0y oge om0z gT o
if gl & g2 kg% o+ ogd 4 g5 4 gE 4
fez r.-1-||:|.."l|_.'|:1
g o= 0 ogho= 0 g7 =
gl Q2 +q) 4t 4 gF S @i 4 Q7 A gl 4P 1=
for gE=0iL'H sl
Qe = 07 g7 = 0 qgE = 0 g¥ = s
ifgl + g v+ =+ 4 +q5 +0F + 37 + o+ @F <= 1+ le-15
for qE=0zifH gt
qT e 0F gE e 0 g2 o= 0
1f g1 4 & &2 g% Fogd 4 g5 4 g6 4 5T & gl + g0 £8 1 4 1le-15
for n::-l::'..-'n_q:l
G =0 g3 = 0:
gl +qE bR i+ a5+ gk s Q7 o+ gl +qF 4= 1+ le-13
for qA=0i LN _qil
a8 =
L gl +qz + ol + o
Toe gi=d:l/H g:1

O gfF = 0 g o= 0
g7 & gl 4+ gD £ 1 4 =25

O off = 0; g8 = 0;

Le-13

*qE POt a7 F St gF T Lo le-15

A gl 4 o 4 8 & ipd + g5 4 g6 4+ 4T 4 55 & g0 48 1 4 le=15

10 & 1 - (gt + g2 + gt +gé + g5 + g = g7 + gl + gi;
E=k+ 1;

Tk, 5| = [gl g2 93 99 Q5 qb q7 g0 ¢ gil)

end
end
end
end
el
_red
=nd
end
end
end
anid
el
=10
&nd
end
end

Figure 1 — The script for accumulating all the discrete probability distributions
with N =10 and M =17 into the set

dLt ] =]t =l )]=

1 1
1(x Bl 1\ p )
=1 2L | - 2l a®T | as)
i=1 i=1
in the k-th function, conversed into the point
[t (t)] by k=2 K. Surely, that the difference in
(16) is not the same with changing Kk .

Integral sum

With the differential (16) the integral sum for
the functional integral (4) over nonnegative frontier

of the null center unit ball by T =[0;1] is

J [ s daitsn-

f(t)esF \ 0

A3 i ope-

k=2 i=
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1
1(x B b
_N Z[ fis (ti )] (17)
i=1
Now on the figure 2 there is the code of the
module “pdfs02ci” for computing the integral (4) as
its sum (17). This module uses the set, saved with
the script “general_ri_N10" (figure 3), when the user
enters by it typing just the number N. Actudly,
there is possibility to change the being preloaded set
manually within this module by typing the comment
at the undesirable preload.
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o Eot Text ool Mook Cefug Qeskiop Window Hele

NCTION =10] x|

D | imBe 3@ 00 aak D8 |-

i fusccion [GRI Svec_notmd_sorted] = pdfadici (N, beca, paisce) 2
2z ] Migospical computation of the continual integral on Ehe &
3 % of the probabillity density functions, defined on che umnitc =
4 =gitch N

5 case 10

6 Lodd probmesas tH10H1T, Swac = probmesaetN10N1T:

7 ¥ losd p =2etN10H1Y, Swvec = probmessetHI10NID:

a s==ti10K17, Swveo = probmessechlOM6S:

a

i0 lond probmsaascHzZOHZ1, Jvec = probmeaactHION21:
11 ¥ load probmesascN20Nss3, Sves = probmessetHI0OMIA:
12 % lomd probmessstHIO0HGS, Swec = probmesseth20N&5:
13 ca== 30

i5 % i #astNI0ON3E, Swvec = probmeasetMI0ONIA;
16 % load probmesastlE0HAS, dwves = probmessetHd0MGS5;
17 cazs 40

18 Load probmessstH40M4l, Swvec = probmessecHN40¥41r
i9 b lond probmeaascI0HES, Swvec = probmeaactHE40HSS:
20 tlosd probmeassscl490H37, Svec = probmessetl$0M27:
21 end

22 1f pargin == 1

23 Beca T 2} pal = anea (L, My Tt = [(1/H]:=1:=[1/N]:=1>
4 e

25 1f pmcgin == 2

9 notmEsgeraeil, K): disgaroail, K|:

a0 for 3=1; K

21 pocm=[{3] = [(=sum(Svec (), 1)."beta, I 17 (1 betal o
32 ekd

iz [v crdecing] = =morct (Swec_norm=i:, N+1|, 'ascend']:
as Swerc porms sorted(lik, 1) = Svec_norms (ordering, :):
26 Ifor J=L1:!KE

ki) bche furccionml ia unity

38 fupctionslscs) = (1N} *sumipaiil, 1:M|,. 21;:

Rl tiuncbional to be typed...

20 fupctional=(3) = (L/N] *sum(Z*t+(t."0.2] . %...

41 Sver_norma_sorted (), 1:M|."E, Z]:

42 &b

23 for 3=2:K e
48 dif3) = Zves nporms sorted(d, H+l] - ...

45 Swes_norms_sorted(i-1, HN+l]:

46 rkd

Lopd provmessstiE0lsl, Swvec = probmessetHI0ONI1e

p=r = op== [l, Ki; t = (1 M)3l:(1/H|:1:
end
[F HN] = aize(3vec); funcrtionala = zercaii, ¥;

Pec_hotme = [S3wec normat]

GRI = smigndfunctionals, *df};

ail

| patstizei |tnea ol 4

BT

Figure 2 — The module “pdfs02ci” code for computing the integral (4) approximately

+J:MATLAB

File Edt Debug Desktop ‘Window Help

by thefixed N and M onsome §>1

=B ]

Do | & B o o || 2| [Fmeriasrpotwone 7] L

typed as a insertion string within the module (figure
4), though by default it is put to unity. Then the
module is saved and rerun from the MATLAB

> probmessetMN10M1I7=0(1:2042975,:): ;I . . .
>» save probmessetN10M17 probmessetN10M17 Command WI ndOW Ilne (flgure 5)-
> -
@gtartl 4 tthe functional is unity
functionals (j) = (1/N) *sum(psiil, 1:N), 2):
. : . zfuncrtional to be typed...
Figure 3— Saving the set of the space-time functionsls () = (1/H) sum(2th (£.40.2) 7. ..

quantized functions f(¢)e &# intheform of

discrete probability distributions by the fixed
integers N and M after having run the script
“genera_ri_N10”

If the parameter 3 is omitted, then =2 by
default. The integrand of the functional (10) may be

67

Svec_norms_sorted(j, 1:N)."2, 2):
Figure 4 — Typing the string of the integrand
2
f(t
w[ (1), t]=2t+1% [#j of the functional (10)

within the module “ pdfs02ci” code
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> GRI = pdfs02ci(40, 2509 ;

Figure 5— Running the module “pdfs02ci” from
the MATLAB Command Window line

Some examples on applying the developed
module, reflecting the functional integration results
with

w[ (1) t]=2t+1, (18)

v F(t).t]=1 (1), (19)

v f(t),t]=t?+f(t), (20)
vl f(t).t]=¢, (21)

[ f(0).t]=5 (22)
V{10055 @)
v f(t) t]_zl__fe(lt), (24)
w[f(t),t]=W, (25)

have been screen-shot off the MATLAB Command
Window aongside the elapsed times of their
accomplishment, though it had been taken only
N=10 and M =17. Those elapsed times are
grouped within the table 1.

It remained only to note, that the precision
of such computation strongly depends on the space-
time discretization grid frequency, and may be
increased as high as needed by working with greater
integers N and M . But if the time resource is
restricted, and the integral (4) needs to be found
faster, then there is another problem of the precision
and computation time reconciliation.

Tablel
Elapsed times for computing the functional integrals
with integrands (18) — (25) of the functional in (4)

Formulafor w| f(t),t] | Elapsed time, seconds
(18) 186.531
(19) 190.797
(20) 242562
1) 377.187
22) 278.094
23) 276.485
(24) 307.453
(25) 228.953

Conclusion

The stated numerical method for taking the
functional integral (4) and the developed within
MATLAB program module “pdfsO2ci” for its
accomplishment are the fundamental basis for
further working on integration over functiona
spaces or infinite-dimensional spaces, that here has
not been strung with some Gaussian or Wiener
measures. Undoubtedly, that would have been
splendiferous to construct the exact analytic
formulas for taking the functional integral over
nonnegative frontier of the null center unit ball, but
this cannot be visible of how to do it as there is put
the general type of the functional, being the inner
integral (10). Thus for now only numerically there is
possibility to evaluate the specific sum of all, say,
mathematical expectations (1) of the first player
payoff as (2) or (3), and then speak about the global
aftermath for a player. In further investigations and
programming it should be thought of how to
compute the differential d[ f (t)] without sorting
the norms (15) or other. That would give a way to
compute functional integrals without accumulating
the set of space-time quantized function f(¢)e <7,
because this accumulation may last for very long
period, and then the total elapsed time of the
functional integral computation might be shortened.
Besides, the computer memory (RAM) would be
almost free of processing the large arrays, as in this
way functional integral computation might be
organized as the consecutive process of
accumulating the integra sum (17), that is
computation on the j -th iteration (not aloop, at all)
of the sum

| 1= I+

(23 n(k) 2]
(5 @-la0) vi=ik1 e

by 1,=0. And al that will be reslizable with

another redefining the differential (16), involving,
maybe, some other norms.
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