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Abstract 

Romanuke V. V. Module for Computing the Functional Integral over Nonnegative Frontier of 
the Null Center Unit Ball. There has been stated a problem of finding the functional integral over 
nonnegative frontier of the null center unit ball, being the set of all the possible probability density 
distribution functions. The suggested method of computing such functional integral has been based 
on constructing its integral sum after breaking the space-time discretization grid and 
differentiating the elements of the functional set by the distance between their sorted norms. The 
developed in MATLAB module works with the preloaded set of the space-time quantized functions 
and the parameter of norming them. 

 

Foresay and problem headline 

Functional integration takes its leading 
positions in the math apparatus of the theoretical 
nuclear physics, including quantum theory [1 — 7]. 
And functional (or continual) integrals were adjusted 
for the control theory, where in the phase space there 
may be needful to obtain the sum of all the 
trajectories, which allow for the phase point to get of 
the initial position and come into the terminal 
position [1, 2, 4, 7, 8]. However, the functional 
integration may be applied practically not only 
within the nuclear quantum physics or control 
theory. Within antagonistic game theory there [9, 
10] had been stated a problem of finding the global 
aftermath for a player by its selecting the pure or 
mixed strategy, when the other player makes its 
selection whatever. This global aftermath lies in 
finding the specific sum from the double integrals 

( ) ( ) ( ) ( ) ( )( ), ,
X Y

p x q y K x y dxdy V p x q y=∫∫ ,  (1) 

taken over the whole set of the probability density 
distribution functions ( )p x  or ( )q y , defined on the 

Borelean subsets X  or Y  of , where x X∈  and 
y Y∈  are the pure strategies of the first and second 

players correspondingly, and surface ( ),K x y  is the 

game kernel, defined on . Certainly, for 
preventing the infinity, each component of such sum 
must be multiplied by some infinitesimal, that is by 
the differential of the probability density distribution 
function, being here ( )p x  or ( )q y . So, the 

problem headline is to find the integral 

 

               (2) 

for having the first player global aftermath by its 
selecting the strategy ( )p x , and (or) the integral 

 

               (3) 

for the second player global aftermath by its 
selecting the strategy ( )q y , where  and  are 

the sets of all the possible probability density 
distribution functions ( )p x  and ( )q y  

correspondingly. Speaking generally, there is the 
problem to find the functional integral of the type 

,            (4) 

taken over the set 

 

 

,                  (5) 

having coincided with the nonnegative frontier of 
the null center ( ) 0f t =  unit ball [11, 12]. 

Analysis of known origins on functional 
integration 

Some analytical ways of finding the 
functional integral were discussed in [8, 13 — 15], 
though there had been investigated a separate class 
of functional integrals on Wiener or Gaussian 
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measure, and also on conditional Wiener measure 
with the weight [16, 17]. Various numerical methods 
from [8, 18] allow to take wider class of functional 
integrals, but they somehow or other are related to 
probability measures with predetermined correlation 
functions. But the common widespread technique in 
the numerical way is the space-time discretization, 
approximately substituting the continual integration 
with the finite number of ordinary Riemannian 
integrals by applying the Monte-Carlo method [18], 
though there are huge time resources spendings [18, 
19]. Another way for executing the functional 
integration is constructing the approximate formulas, 
turning to the exact statements on the determined 
class of functionals, where [18, 19], particularly, for 
the continual integrals over Gaussian measures there 
had been got new approximate formulas, turned out 
to be exact on the class of functional polynomials of 
any power. The obtained formulas in the particular 
case of the conditional Wiener measure [18, 20] had 
been used for calculating some values in the 
Euclidean quantum mechanics with approximate 
computation of the Feynman integrals without time 
discretization, where quadrature formulas brought 
the time saving and desired precision. Furthermore, 
there in [18] had been obtained the approximate 
formulas for multiple continual integrals over 
conditional Wiener measure with the weight, where 
also investigated the measure of the continual 
integration within the two-dimensional Euclidean 
quantum field theory with polynomial interactions of 
boson fields [4, 6, 7, 19]. Nevertheless, there have 
not been exposed the origins, where the proposed 
ways of numerical functional integration computing 
would have been implemented within some math 
program environment [18, 19]. Moreover, the 
integral (4), even not regarding its simplicity, has 
not been programmatically implemented until now. 

Paper line destination and main points 

In the initial approximation, while integrating 
(4), the Borelean subset  may be predefined 
as the unit segment [ ]0; 1 . Then this paper line 

destination is to develop the program module for 
computing the functional integral (4) by [ ]0; 1T = . 

For this the following points should be accomplished 
successively. Firstly, there should be stated properly 

and digitized the differential ( )d f t⎡ ⎤⎣ ⎦  within 

. Secondly, there should be stated and 

digitized the integral sum for the functional integral 
(4). And thirdly, that actually must be accomplished 
primarily, the number of the integral sum 
components is defined by the space-time 
discretization grid and its structure along the space 
dimension. At last, those digitally stated categories 
will be typed accordingly within the powerful math 
environment MATLAB for running the module for 
digital functional integration from the MATLAB 

Command Window line. 

Breaking the space-time into grid 

Before digitizing the set (5) from the infinite 
number of functions of the half-ball frontier towards 
the finite number of the time-sampled staircase 
functions [18], each function  is going to 

be essentially sampled. For this the unit segment 

[ ]0; 1  is divided into N  equal segments 

[ ]{ }1 1
1

1
; ;

N
N

i i i
i

i i
t t

N N− =
=

⎧ − ⎫⎡ ⎤= ⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
               (6) 

by as great N  as needful or possible (that depends 
on the computation resources, duration resources or 
on all taken together). Then the time differential in 
the functional-integrand of (4) is 

1

1 1
i i

i i
dt t t

N N N−
−≈ − = − =                 (7) 

approximately by 

( )1
1,

max 0i i
i N
N

t t −=
→∞

− → .                       (8) 

So, the integrand of the functional in (4) on the 
segment [ ]1;i it t−  is 

( ) ( ), ,i if t t f t t⎡ ⎤ψ ≈ ψ⎡ ⎤⎣ ⎦ ⎣ ⎦  1,i N∀ = .        (9) 

Then the functional-integrand of (4) is 

( ) ( ) ( )
1

1

10

, ,
N

i i i i

i

f t t dt f t t t t −
=

⎡ ⎤ψ ≈ ψ − =⎡ ⎤⎣ ⎦ ⎣ ⎦∑∫  

( ) ( )
1 1

1 1
, ,

N N

i i i i

i i

f t t f t t
N N

= =

⎡ ⎤ ⎡ ⎤= ψ = ψ =⎣ ⎦ ⎣ ⎦∑ ∑  

1

1
,

N

i

i i
f

N N N
=

⎡ ⎤⎛ ⎞= ψ ⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

∑ .                (10) 

Going further, suppose, that the time-sampled 
function  has M  quantization levels. 

First of them is that ( ) 0f t = . About the rest of the 

1M −  quantization levels there is the lemma. 
Lemma 1. If the time-sampled function 

 has M  equidistant quantization levels, 

starting with the zeroth, then on the m -th 

quantization level, if only ( ) 0f t ≠  there, 

( ) ( )1
1

N
f t m

M
= −

−
, 1,m M= .           (11) 

Proof. Let ( )f t  correspond to the unit 

probability in the point t = τ . Then it is the Dirac 

function: ( ) ( )f t t= δ − τ  and ( )
1

0

1t dtδ − τ =∫ . But 

with (10) there should be 

( ) ( )( )
1

1

10

N

i i i

i

t dt t t t −
=

δ − τ ≈ δ − τ − =∑∫  
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( )
1

1
1

N

i

i

t
N

=

= δ − τ =∑  by { }
1

N

i i
t

=
τ∈ ,         (12) 

what means that ( )it Nδ − τ ≈  by itτ =  or even 

[ ]1;i it t−∀ τ∈  and ( ) 0itδ − τ =  [ ]1;i it t−∀ τ∉ . So, 

on the last M -th quantization level ( ) 0f t =  or 

( )f t N=  and this is the maximal value of the 

quantized function . If those quantization 

levels are equidistant, then the difference between 

two neighboring levels is 
0

1 1

N N

M M

− =
− −

. And on 

the m -th quantization level, 1,m M= , if only 

( ) 0f t ≠  there, ( ) ( )1
1

N
f t m

M
= −

−
. The lemma 

has been proved. 
Note, that here, as a corollary, the space-time 

quantized function  may be better 

represented in the form of the discrete probability 
distribution. 

Theorem 1. For the time-sampled function 
 with M  equidistant quantization levels, 

starting with zeroth, the probability [ ]( )1;i i iP P t t−=  

on the segment [ ]1;i it t−  is found as 
( )if t

N
 and 

1
0,

1i

m
P

M

−⎧ ⎫∈⎨ ⎬−⎩ ⎭
. 

Proof. It is just 

[ ]( ) ( ) ( )
1 1

1;
i i

i i

t t

i i i i

t t

P P t t f t dt f t dt

− −

−= = ≈ =∫ ∫  

( ) ( )[ ] ( )

1

1

i

i

t

i
i i i i

t

f t
f t dt f t t t

N
−

−= = − =∫ .       (13) 

And as on the m -th quantization level the value 

( ) ( )0, 1
1i

N
f t m

M
⎧ ⎫∈ −⎨ ⎬−⎩ ⎭

 then 
1

0,
1i

m
P

M

−⎧ ⎫∈⎨ ⎬−⎩ ⎭
 on 

this level. The theorem has been proved. 
The set of the space-time quantized functions 

 may be accumulated with the MATLAB 

script “general_ri_N10” (figure 1) through the 
corresponding discrete probability distributions, 
presented for 10N =  and 17M = . For the greater 
N  and M  this code is obviously added with proper 
nested loops. 

However, the number of the space-time 
quantized probability density distribution functions 

 is not strictly determined by the integers 

N  and M . It is determined by some operation, 
allowing to discriminate each couple of probability 
density distribution functions. Such operation runs 
with differentiating the function . 

Digitized differential ( )d f t⎡ ⎤⎣ ⎦  

One of the simplest ways to define the 
differential over the functional set is to line up the 
sampled elements of this set in the ascending order. 
After such conversion from the functional set into 
some compact closed subset of  there is the single 
way to define the differential as the difference 
between the current and foregoing element, where 
module is not yet needed due to the ascending order. 
The conversion of the function  to some 

nonnegative value here cannot be ruled over the 
norm in the space  as then there would be 

the same norm value for any function . 

Then it should be accepted the norm of the space 
 by 1β > . And then 

( ) ( ) ( )

1 1
1 1

0 0

f t f t dt f t dt
β β

β β⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = ≈⎡ ⎤⎣ ⎦⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∫ ∫  

( ) ( )
1

1

1

N

i i i

i

f t t t
ββ

−
=

⎛ ⎞
⎡ ⎤≈ − =⎜ ⎟⎣ ⎦⎜ ⎟

⎝ ⎠
∑  

( )
1

1

1
N

i

i

f t
N

ββ

=

⎛ ⎞
⎡ ⎤= ⎜ ⎟⎣ ⎦⎜ ⎟

⎝ ⎠
∑ .                   (14) 

However, it is easy to demonstrate that by 
1β >  the integral (14) turns to infinity for 

( ) ( )f t t= δ − τ . Then it will be natural to redefine 

the norm (14) as 

 

( )

( )

( )

1
11

0 1
1 1

1

0

1

1

N

i

i

f t dt f t
N

Nt dt N

β ββ β

=

β βββ

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= ≈ =

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟δ − τ⎡ ⎤⎣ ⎦ ⎝ ⎠⎜ ⎟

⎝ ⎠

∫ ∑

∫

 

( )

( )
( )

1

1

1
1

1

1

N

i N
i

i

i

f t

f t
N

N

ββ

ββ=

β β =

⎛ ⎞
⎡ ⎤⎜ ⎟⎣ ⎦⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎡ ⎤= = ⎜ ⎟⎣ ⎦⎜ ⎟

⎝ ⎠

∑
∑ .    (15) 

Suppose, that after getting the norm (15), 
there are the K  space-time quantized functions 

, arranged as ( ){ }
1

K

k k
f t

=
 in ascending 

order of their norms (15). Then the differential
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Figure 1 — The script for accumulating all the discrete probability distributions  
with 10N =  and 17M =  into the set 

 
 
 

( ) ( ) ( )1k kd f t f t f t−≈ − =⎡ ⎤⎣ ⎦  

( ) ( )
1 1

1

1 1

1 1
N N

k i k i

i i

f t f t
N N

β ββ β
−

= =

⎛ ⎞ ⎛ ⎞
⎡ ⎤ ⎡ ⎤= −⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑    (16) 

in the k -th function, conversed into the point 

( )kf t  by 2,k K= . Surely, that the difference in 

(16) is not the same with changing k . 

Integral sum 

With the differential (16) the integral sum for 
the functional integral (4) over nonnegative frontier 
of the null center unit ball by [ ]0; 1T =  is 

 

( ) ( )( )1

2 1

1
,

K N

k k k

k i

i i
f f t f t

N N N −
= =

⎛ ⎞⎡ ⎤⎛ ⎞≈ ψ − =⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠
∑ ∑  

2 1

1
,

K N

k

k i

i i
f

N N N= =

⎛ ⎞⎡ ⎤⎛ ⎞= ψ ×⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠
∑ ∑  

( )
1

1

1
N

k i

i

f t
N

ββ

=

⎡
⎛ ⎞⎢

⎡ ⎤× −⎜ ⎟⎣ ⎦⎢ ⎜ ⎟
⎝ ⎠⎢

⎣

∑  

( )
1

1

1

1
N

k i

i

f t
N

ββ
−

=

⎤
⎛ ⎞ ⎥

⎡ ⎤− ⎜ ⎟⎣ ⎦ ⎥⎜ ⎟
⎝ ⎠ ⎥

⎦

∑ .                (17) 

Now on the figure 2 there is the code of the 
module “pdfs02ci” for computing the integral (4) as 
its sum (17). This module uses the set, saved with 
the script “general_ri_N10” (figure 3), when the user 
enters by it typing just the number N . Actually, 
there is possibility to change the being preloaded set 
manually within this module by typing the comment 
at the undesirable preload. 
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Figure 2 — The module “pdfs02ci” code for computing the integral (4) approximately  

by the fixed N  and M  on some 1β >  

 
 

 
 

Figure 3 — Saving the set of the space-time 
quantized functions  in the form of 

discrete probability distributions by the fixed 
integers N  and M  after having run the script 

“general_ri_N10” 
 
 
If the parameter β  is omitted, then 2β =  by 

default. The integrand of the functional (10) may be 

typed as a insertion string within the module (figure 
4), though by default it is put to unity. Then the 
module is saved and rerun from the MATLAB 
Command Window line (figure 5). 

 

 
 

Figure 4 — Typing the string of the integrand 

( ) ( ) 2

0.2, 2
f t

f t t t t
N

⎛ ⎞
ψ = +⎡ ⎤ ⎜ ⎟⎣ ⎦

⎝ ⎠
 of the functional (10) 

within the module “pdfs02ci” code 
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Figure 5 — Running the module “pdfs02ci” from 
the MATLAB Command Window line 

 
Some examples on applying the developed 

module, reflecting the functional integration results 
with 

( ) , 2 1f t t tψ = +⎡ ⎤⎣ ⎦ ,                    (18) 

( ) ( ),f t t f tψ =⎡ ⎤⎣ ⎦ ,                    (19) 

( ) ( )2,f t t t f tψ = +⎡ ⎤⎣ ⎦ ,                 (20) 

( ), tf t t eψ =⎡ ⎤⎣ ⎦ ,                      (21) 

( ) ( )2

1
,f t t

t f t
ψ =⎡ ⎤⎣ ⎦ +

,                (22) 

( ) ( ),
2

te
f t t

f t

−

ψ =⎡ ⎤⎣ ⎦ +
,                 (23) 

( ) ( )
1

,
2

te
f t t

f t

−−ψ =⎡ ⎤⎣ ⎦ −
,                 (24) 

( ) ( ) 2

4
,

2 3 7

t
f t t

f t t
ψ =⎡ ⎤⎣ ⎦ − −

,            (25) 

have been screen-shot off the MATLAB Command 
Window alongside the elapsed times of their 
accomplishment, though it had been taken only 

10N =  and 17M = . Those elapsed times are 
grouped within the table 1. 

It remained only to note, that the precision 
of such computation strongly depends on the space-
time discretization grid frequency, and may be 
increased as high as needed by working with greater 
integers N  and M . But if the time resource is 
restricted, and the integral (4) needs to be found 
faster, then there is another problem of the precision 
and computation time reconciliation. 

 
Table 1 

Elapsed times for computing the functional integrals 
with integrands (18) — (25) of the functional in (4) 

Formula for ( ) ,f t tψ ⎡ ⎤⎣ ⎦  Elapsed time, seconds 

(18) 186.531 
(19) 190.797 
(20) 242.562 
(21) 377.187 
(22) 278.094 
(23) 276.485 
(24) 307.453 
(25) 228.953 

 
 

Conclusion 

The stated numerical method for taking the 
functional integral (4) and the developed within 
MATLAB program module “pdfs02ci” for its 
accomplishment are the fundamental basis for 
further working on integration over functional 
spaces or infinite-dimensional spaces, that here has 
not been strung with some Gaussian or Wiener 
measures. Undoubtedly, that would have been 
splendiferous to construct the exact analytic 
formulas for taking the functional integral over 
nonnegative frontier of the null center unit ball, but 
this cannot be visible of how to do it as there is put 
the general type of the functional, being the inner 
integral (10). Thus for now only numerically there is 
possibility to evaluate the specific sum of all, say, 
mathematical expectations (1) of the first player 
payoff as (2) or (3), and then speak about the global 
aftermath for a player. In further investigations and 
programming it should be thought of how to 

compute the differential ( )d f t⎡ ⎤⎣ ⎦  without sorting 

the norms (15) or other. That would give a way to 
compute functional integrals without accumulating 
the set of space-time quantized function , 

because this accumulation may last for very long 
period, and then the total elapsed time of the 
functional integral computation might be shortened. 
Besides, the computer memory (RAM) would be 
almost free of processing the large arrays, as in this 
way functional integral computation might be 
organized as the consecutive process of 
accumulating the integral sum (17), that is 
computation on the j -th iteration (not a loop, at all) 

of the sum 

1j jI I+ = +  

1

1
,

N

j

i

i i
f

N N N
=

⎛ ⎞⎡ ⎤⎛ ⎞+ ψ ×⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠
∑  

( ) ( )( )1j jf t f t−× −   1, 1j K∀ = −        (26) 

by 1 0I = . And all that will be realizable with 

another redefining the differential (16), involving, 
maybe, some other norms. 
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