Лекиия 1.

Предмет теории вероятностей. Случайные события. Алгебра событий. Относительная частота и вероятность случайного события. Полная группа событий. Классическое определение вероятности. Основные свойства вероятности. Основные формулы комбинаторики.

Лекция 2.

Геометрические вероятности. Теорема сложения вероятностей. Противоположные события. Условные вероятности. Теорема умножения вероятностей. Независимые события. Вероятность появления хотя бы одного события.

Лекция 3.

Формула полной вероятности и формула Байеса. Схема и формула Бернулли. Приближение Пуассона для схемы Бернулли.

Лекция 4.

Случайные величины. Закон распределения и функция распределения дискретной случайной величины. Биномиальное распределение и распределение Пуассона. Лекция 5.

Функция распределения и плотность распределения непрерывной случайной величины, их взаимосвязь и свойства. Равномерное распределение вероятностей. Лекиия 6.

Нормальный закон распределения вероятностей. Нормальная кривая. Функция Лапласа. Вычисление вероятности попадания в заданный интервал нормальной случайной величины. Правило трех сигм. Показательное распределение. Функция надежности. Показательный закон надежности.

Лекция 7.

Основные числовые характеристики дискретных и непрерывных случайных величин: математическое ожидание, дисперсия и среднее квадратическое отклонение. Их свойства и примеры.

Лекция 8.

Случайные векторы (системы нескольких случайных величин). Закон распределения веро-ятностей дискретной двумерной случайной величины. Функция распределения и плот-ность распределения двумерной случайной величины, их свойства. Вероятность попада-ния случайной точки в произвольную область. Отыскание плотностей вероятности со-ставляющих двумерной случайной величины. Равномерное распределение на плоскости.

Лекиия 9.

Некоторые числовые характеристики одномерных случайных величин: начальные и центральные моменты, мода, медиана, квантиль, коэффициенты асимметрии и эксцесса. Числовые характеристики двумерных случайных величин: начальные и центральные моменты. Корреляционный момент и коэффициент корреляции. Коррелированность и зависимость случайных величин.

Лекция 10.

Функции от случайных величин. Функция одного случайного аргумента, ее распределение и математическое ожидание. Функция двух случайных аргументов. Распределение суммы независимых слагаемых. Устойчивость нормального распределения.

Лекция 11.

Нормальный закон распределения на плоскости. Линейная регрессия. Линейная корреляция.

Лекция 12.

Распределения «хи-квадрат», Стьюдента и Фишера. Связь этих распределений с нормаль-ным распределением.

Лекция 13

Закон больших чисел. Неравенство Чебышева. Теоремы Чебышева и Бернулли.

Лекция 14.

Центральная предельная теорема Ляпунова. Предельная теорема Муавра-Лапласа. Лекиия 15.

Основные понятия математической статистики. Генеральная совокупность и выборка. Вариационный ряд, статистический ряд. Группированная выборка. Группированный статистический ряд. Полигон частот. Выборочная функция распределения и гистограмма.

Лекция 16.

Числовые характеристики статистического распределения: выборочное среднее, оценки дисперсии, оценки моды и медианы, оценки начальных и центральных моментов. Статистическое описание и вычисление оценок параметров двумерного случайного вектора.

Лекция 17.

Основные свойства статистических характеристик параметров распределения: несме-щенность, состоятельность, эффективность. Несмещенность и состоятельность выборочного среднего как оценки математического ожидания. Смещенность выборочной дисперсии. Пример несмещенной оценки дисперсии. Асимптотически несмещенные оценки. Способы построения оценок: метод наибольшего правдоподобия, метод момен-тов, метод квантили, метод наименьших квадратов, байесовский подход к получению оценок.

Лекция 18.

Интервальное оценивание неизвестных параметров. Точность оценки, доверительная вероятность (надежность), доверительный интервал. Построение доверительных интервалов для оценки математического ожидания нормального распределения при известной и при неизвестной дисперсии. Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения.

Дополнительные общие понятия:

Лекция 19.

Статистическая проверка статистических гипотез. Общие принципы проверки гипотез. Понятия статистической гипотезы (простой и сложной), нулевой и конкурирующей гипотезы, ошибок первого и второго рода, уровня значимости, статистического критерия, критической области, области принятия гипотезы. Наблюдаемое значение критерия. Критические точки. Мощность критерия. Критерии для проверки гипотез о вероятности события, о математическом ожидании, о сравнении двух дисперсий.

Лекиия 20.

Критерий Пирсона для проверки гипотезы о виде закона распределения случайной величины. Проверка гипотез о нормальном, показательном и равномерном распределениях по критерию Пирсона. Критерий Колмогорова. Приближенный метод проверки нормальности распределения, связанный с оценками коэффициентов асимметрии и эксцесса.

Лекция 21.

Корреляционный анализ.

Лекция 22.

Регрессионный анализ.

Лекция 23.

Однофакторный дисперсионный анализ.

Лекиия 24.

Моделирование случайных величин методом Монте-Карло (статистических испытаний).