Лабораторная работа 1

Исследование сложной цепи постоянного тока

<u>Цель</u>. Проверить основные законы цепи постоянного тока с последовательным, параллельным и смешанным соединениями потребителей. Научиться правильно, подбирать электроизмерительные приборы (по напряжению сети и потребителей) для включения в цепь по заданной схеме.

1.1 Общие сведения

Последовательным называется такое соединение, при котором во всех включенных сопротивлениях ток один и тот же.

При последовательном соединении потребителей (рис. 1) их сопротивления суммируются

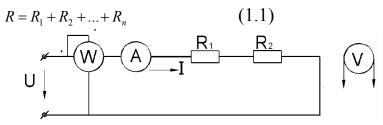


Рисунок 1.1 – Схема последовательного соединения Величина тока

$$I = \frac{I_1}{R_1} = \frac{I_2}{R_2} = \frac{I_3}{R_3} = \dots = \frac{I_n}{R_n}$$

то есть

$$I = I_1 = I_2 = \dots = I_n$$
.

Общее напряжение цепи равно сумме падений напряжений на отдельных участках цепи:

$$U = U_1 + U_2 + \dots + U_n, (1.2)$$

а потребляемая из сети мощность сумме мощностей отдельных приёмников энергии $P = P_1 + P_2 + ... + P_n$. (1.3)

Параллельным называется такое сопротивление, при котором все включенные в цепь приёмники находятся под одним и тем же напряжением.

При параллельном соединении потребителей (рис. 2) общая проводимость цепи равна сумме проводимостей отдельных ветвей:

$$q = q_1 + q_2 ... + q_n = \frac{1}{R_1} + \frac{1}{R_2} + ... + \frac{1}{R_n},$$
 (1.4)

а общий ток, потребляемый из сети, равен сумме токов отдельных потребителей:

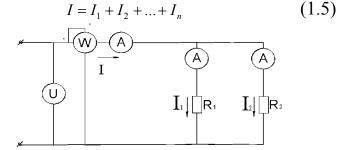


Рисунок 1.2 – Схема параллельного соединения

Напряжение на зажимах потребителей в этом случае равны между собой, а общая мощность определяется по уравнению (1.3)

Смешанным называется такое соединение, при котором в цепи имеются группы параллельно и последовательно включенных приёмников (рис. 1.3).

При смешанном соединении потребителей общее сопротивление цепи

$$R = R_1 + R_2 ... + R_n = \frac{1}{q_1 + q_2 + ... + q_n},$$

где $R_1, R_2, ..., R_n$ - сопротивление последовательно соединённых участков.

 $q_{1},q_{2},...,q_{n}\;$ - проводимость параллельно соединённых участков.

Рисунок 1.3 – Схема смешанного соединения

Ток в неразрывной части цепи равен сумме токов ветвей (1.5), а общее напряжение и мощность определяются соответственно по уравнениям (1.2) и (1.3).

1.2 Порядок выполнения

- 1. Собрать электрическую схему цепи с последовательным соединением сопротивлений (элементов) рис. 1.1.
 - 2. Измерить $I; U; U_1; U_2; P$.
- 3. Вычислить $R; R_1; R_2; P_1; P_2$. Результаты измерений и вычислений занести в табл. 1.1.

Таблица 1.1 – Результаты экспериментальных исследований

]	Измере	ено		Вычислено						
I	U	U_1	U_{2}	P	R	R_1	R_2	P_1	P_2		

- 4. Проверить справедливость формул (1.1) -(1.3).
- 5. Собрать электрическую схему цепи с параллельным соединением сопротивлений (элементов) рис. 1.2.
- 6. Выполнить задания (п. 2, 3) применительно к этой схеме. Результаты измерений и вычислений занести в табл. 1.2.

Таблица 1.2 – Результаты экспериментальных исследований

]	Измере	ено		Вычислено						
U	I	I_1	I_2	P	R	R_{1}	R_2	P_1	P_2		

- 7. Проверить справедливость формул (1.3) -(1.5).
- 8. Собрать электрическую схему цепи со смешанным соединением сопротивлений (элементов) рис. 1.3.

9. Выполнить задания (п. 2, 3) применительно к этой схеме. Результаты измерений и вычислений занести в табл. 1.3.

Таблица 1.3 – Результаты экспериментальных исследований

Измерено							Вычислено						
U	U_1	U_2	I	I_1	I_2	P	R	R_1	R_2	R_3	P_1	P_2	P_3

1.3 Содержание отчёта

- 1. Представить схему последовательного соединения потребителей энергии.
- 2. Привести заполненную табл. 1.1.
- 3. Вычертить схему параллельного соединения потребителей энергии.
- 4. Привести заполненную табл. 1.2.
- 5. Вычертить схему смешанного соединения потребителей энергии.
- 6. Привести заполненную табл. 1.3.

1.4 Контрольные вопросы

- 1. Как выполняется последовательное, параллельное, смешанное соединение сопротивлений?
 - 2. При каждом из этих способов:
 - а) Какую получаем цепь разветвленную или неразветвлённую?
 - б) Сколько токов, напряжений в цепи?
 - в) Как находится P, R по мощностям и сопротивлениям отдельных участков?
- 3. Какие законы постоянного тока можно проверить в схемах (рис. 1.1, 1.2)?
- 4. Как изменяются напряжения U_1 и U_2 в схеме (рис 1.3), если уменьшить величину сопротивлений R_2 ?