Раздел 4

НЕЛИНЕЙНЫЕ ОБЪЕКТЫ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ

§4.4. Линии второго порядка на плоскости

Пусть на плоскости дана *ортонормированная* система координат $\{O, \overrightarrow{e_1}, \overrightarrow{e_2}\}$ и некоторая линия L.

Определение 4.4.1.

В соответствии с определениями 4.1.2. и 4.1.3. будем говорить, что линия L является алгебраической линией второго порядка, если ее уравнение в данной системе координат имеет вид:

$$Ax^{2} + 2Bxy + Cy^{2} + 2Dx + 2Ey + F = 0$$
 (4.4.1.)

где числа A, B и C не равны нулю одновременно (|A|+|B|+|C|>0), а x и y суть координаты радиус-вектора точки, лежащей на линии L.

Поскольку коэффициенты уравнения 4.4.1. зависят от выбора системы координат, при исследовании свойств линий второго порядка целесообразно предварительно перейти к той системе координат, в которой запись уравнения линии оказывается наиболее простой.

Если ввести обозначение
$$\Delta = \det \left\| \begin{matrix} A & B \\ B & C \end{matrix} \right\| = AC - B^2$$
, то будет справедлива

	Пустые мно- жества	Точки	Совпадаю- щие прямые	Несовпадающие прямые	Кривые
Δ>0	$\frac{{x'}^2}{a^2} + \frac{{y'}^2}{b^2} = -1$	$\frac{{x'}^2}{a^2} + \frac{{y'}^2}{b^2} = 0$			Эллипс $\frac{{x'}^2}{a^2} + \frac{{y'}^2}{b^2} = 1$
Δ < 0				$\frac{{x'}^2}{a^2} - \frac{{y'}^2}{b^2} = 0$	$\frac{\Gamma unepбoлa}{\frac{{x'}^2}{a^2} - \frac{{y'}^2}{b^2}} = 1$
$\Delta = 0$	$y'^2 = -a^2, \forall x'$		$y'^2 = 0, \forall x'$	$y'^2 = a^2, \forall x'$	Парабола $y'^2 = 2px'$

§4.5. Поверхности второго порядка в пространстве

Пусть дана *ортонормированная* система координат $\{O, e_1, e_2, e_3\}$ в пространстве.

Определение 4.5.1. В соответствии с определениями 4.2.2. и 4.2.3. будем говорить, что поверхность S является алгебраической поверхностью второго порядка, если ее уравнение в данной системе координат имеет вид

$$A_{11}x^{2} + A_{22}y^{2} + A_{33}z^{2} + 2A_{12}xy + 2A_{13}xz + 2A_{23}yz + 2A_{14}x + 2A_{24}y + 2A_{34}z + A_{44} = 0 ,$$

$$(4.5.1.)$$

где числа A_{11} ; A_{22} ; A_{33} ; A_{12} ; A_{13} ; A_{23} не равны нулю одновременно, а x, y и z суть координаты радиус-вектора точки, лежащей на поверхности S.

Как и в плоском случае, коэффициенты уравнения (4.5.1.) зависят от выбора системы координат, поэтому при исследовании свойств поверхностей второго порядка целесообразно предварительно перейти в ту систему координат, для которой запись уравнения поверхности оказывается наиболее простой.

Пустые множества	Точки, прямые и плоскости	Цилиндры и конусы
$\frac{x'^{2}}{a^{2}} + \frac{y'^{2}}{b^{2}} + \frac{z'^{2}}{b^{2}} = -1$ $\frac{x'^{2}}{a^{2}} + \frac{y'^{2}}{b^{2}} = -1; \forall z'$ $x'^{2} = -a^{2}; \forall y', z'$	Изолированная точка $\frac{{x'}^2}{a^2} + \frac{{y'}^2}{b^2} + \frac{{z'}^2}{b^2} = 0$ Прямая $\frac{{x'}^2}{a^2} + \frac{{y'}^2}{b^2} = 0$; $\forall z'$ Пара пересекающихся плоскостей $\frac{{x'}^2}{a^2} - \frac{{y'}^2}{b^2} = 0$; $\forall z'$ Пара параллельных или совпадающих плоскостей $x'^2 = a^2$ $x'^2 = 0$; $\forall y', z'$	Эллиптический цилиндр $\frac{{x'}^2}{a^2} + \frac{{y'}^2}{b^2} = 1; \forall z'$ Гиперболический цилиндр $\frac{{x'}^2}{a^2} - \frac{{y'}^2}{b^2} = 1; \forall z'$ Параболический цилиндр ${y'}^2 = 2px'; \forall z'$ Конус $\frac{{x'}^2}{a^2} + \frac{{y'}^2}{b^2} - \frac{{z'}^2}{c^2} = 0$

Невырожденные поверхности

Эллипсоиды	Параболоиды	Гиперболоиды	
$\frac{{x'}^2}{a^2} + \frac{{y'}^2}{b^2} + \frac{{z'}^2}{c^2} = 1$	Эллиптический параболоид $\frac{{x'}^2}{a^2} + \frac{{y'}^2}{b^2} = 2z'$	Однополостный гиперболоид $\frac{{x'}^2}{a^2} + \frac{{y'}^2}{b^2} - \frac{{z'}^2}{c^2} = 1$	
	Гиперболический параболоид $\frac{{x'}^2}{a^2} - \frac{{y'}^2}{b^2} = 2z'$	Двуполостный гиперболоид $\frac{{x'}^2}{a^2} - \frac{{y'}^2}{b^2} - \frac{{z'}^2}{c^2} = 1$	

причем a > 0, b > 0, c > 0, p > 0.

§4.6. Альтернативные системы координат

В ряде практических приложений оказывается целесообразным использование систем координат, отличных от декартовой.

Примером альтернативной системы координат на плоскости является полярная система координат.

Положение точки на плоскости в этой системе координат задается парой упорядочен- $\{
ho, arphi\}$, где $ho = \left| \stackrel{
ightarrow}{OM} \right|$, чисел ных $arphi = \angle \ (\overset{
ightarrow}{OM}, \overset{
ightarrow}{OP})$, удовлетворяющих ограни-

чениям $\rho \ge 0$, $0 \le \varphi < 2\pi$.

Точка O называется *полюсом*, а луч OP *полярной осью*. Угол ϕ отсчитывается против часовой стрелки (рис. 4.6.1.). Для полюса этот угол не определяется.

Формулы перехода от ортонормированной декартовой системы координат к полярной и обратно имеют следующий вид:



Рисунок 4.6.1.

$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases} \begin{cases} \rho = \sqrt{x^2 + y^2} \\ \cos \varphi = \frac{x}{\sqrt{x^2 + y^2}}; \sin \varphi = \frac{y}{\sqrt{x^2 + y^2}}. \end{cases}$$

Использование полярной системы координат позволяет упростить описание объектов, обладающих точечной симметрией.