ЭКВИВАЛЕНТНАЯ СХЕМА ФОТОЭЛЕКТРИЧЕСКОГО ЭЛЕМЕНТА И ЕЕ ПАРАМЕТРЫ

Федченко Т.В., студент; Левшов А.В., доц., к.т.н.

(ГВУЗ «Донецкий национальный технический университет», г. Донецк, Украина)

Известно несколько вариантов представления схемы замещения фотоэлектрического элемента: обобщенная (эквивалентная), с двойным экспоненциалом, упрощенная и идеализированная [1]. Наиболее рационально представляет реальный солнечный элемент, так называемая эквивалентная [2,3] схема замещения, показанная на рисунке 1.

Составными элементами схемы является: источник тока, диод, шунтирующее $R_{\rm III}$ и последовательное $R_{\rm II}$ сопротивления. Источник тока моделирует процесс возникновения в элементе фототока I_{Φ} под действием освещения. Диод включен в прямом направлен параллельно источнику тока. Под действием прямого смещения из-за наличия избыточных концентраций электронов в \mathbf{n} – области элемента и избыточной концентрации дырок в его \mathbf{p} – области через диод протекает некоторый ток $I_{\rm Z}$. Шунтирующие сопротивления фотоэлемента $R_{\rm III}$, возникает за счет наличия обратного сопротивления $\mathbf{n}-\mathbf{p}$ – перехода и различных проводящих пленок или загрязнений на поверхности элемента, оно также включено параллельно источнику тока. Последовательное сопротивление $R_{\rm II}$ включено последовательно с сопротивлением нагрузки $R_{\rm H}$, его составляют сопротивление контактов (главным образом переходное сопротивление полупроводник - метал) и сопротивление самого полупроводникового материала из которого изготовлен фотоэлемент (сопротивление каждой из $\mathbf{p}-\mathbf{u}~\mathbf{n}$ – областей элемента. На этом сопротивлении будет теряться часть Э.Д.С., развеваемой фотоэлементом [3].

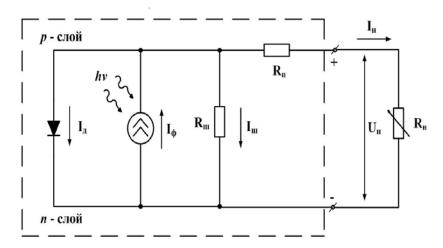


Рисунок 1 - Эквивалентная схема фотоэлемента

Выражение для определения тока нагрузки [4]

$$I_{H} = I_{\Phi} - I_{O.H} \cdot \left[e^{\frac{q}{A \cdot k \cdot T} \cdot \left(U_{H} + I_{H} \cdot R_{\Pi} \right)} - 1 \right] - \frac{U_{f}}{R_{\emptyset}}, \qquad (1)$$

где $I_{O.H}$ — обратный ток насыщения; q — заряд электрона; k — постоянная Больцмана; T — абсолютная температура фотоэлемента; A — диодный фактор; U_H — падение напряжение на сопротивлении нагрузки R_H .

Для нахождения параметров схемы замещения фотоэлемента требуются две вольт – амперные характеристики (BAX), такие как: *световая* (нагрузочная) и *темновая* ВАХ. На

рисунке 2 в одной системе координат представлены ВАХ для фотоэлемента. На нем сплошная кривая это нагрузочный участок световой характеристики (в квадранте–I); пунктирная кривая – темновая характеристика (в квадранте–II обратная ветвь, в квадранте IV– прямая ветвь).

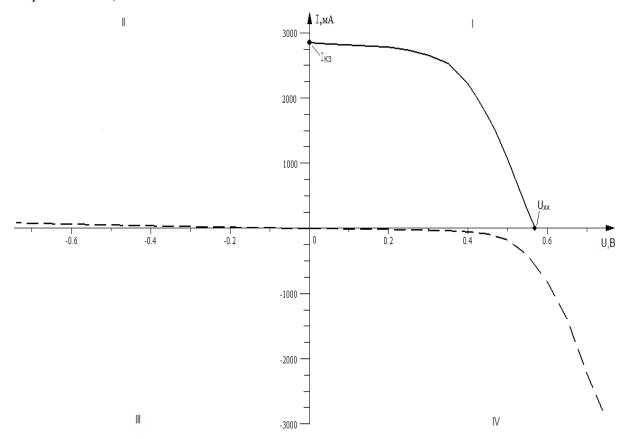


Рисунок 2 – Вольт – амперная характеристика ФЭ.

Фотоэлемент изучают уже на протяжении длительного периода времени и разработали ряд методик, позволяющих на основании *световой* и *темновой* ВАХ солнечных элементов рассчитать значения параметров схемы замещения: $R_{I\!I}$, $R_{I\!I\!I}$, $I_{O,H}$ и коэффициент A.

Для нахождения последовательного сопротивления R_{II} , используют часть *световой* характеристики, расположенной в I квадранте, и ее продолжение (IV квадрант). Величина наклона этой прямой к оси токов характеризует последовательное сопротивление Φ Э. (смотри рисунок 3.б),

$$R_{\Pi} = \left| \frac{\Delta U_{\Pi P}}{\Delta I_{\Pi P}} \right|, \tag{2}$$

где $\Delta U_{\Pi P}$ и $\Delta I_{\Pi P}$ измеряются в области, близкой к $U_{X,X}$.

 R_{III} находим по обратной ветви *темновой* ВАХ, которая также представляет собой прямую линию. Степень наклона этой прямой к оси напряжений характеризует величину шунтирующего сопротивления фотоэлемента. (показано на рисунке 3.a)

$$R_{III} = \left| \frac{\Delta U_{OBP}}{\Delta I_{OBP}} \right|. \tag{3}$$

Обратный ток насыщения $I_{O.H}$, и коэффициент A находим по прямой ветви темновой ВАХ. Для этого воспользуемся *темновой* характеристикой диода и уравнением прямой в отрезках:

$$\ln \left(I_{\text{Д}} + I_{\text{O.H}} \right) = \ln \left(I_{\text{O.H}} \right) + \frac{q}{A \cdot k \cdot T} \cdot U. \tag{4}$$

Это уравнение применяется при расчетах только в случае больших токов (когда $I_{\text{Д}} >> I_{\text{О.H}}$), а также рекомбинационного механизма протекания обратного тока насыщения через n-p – переход[3].

Участок больших токов и напряжений (характерных для рабочей нагрузочной точки Φ Э) прямой ветви *темновой* ВАХ используется для построения зависимости $\ln I_{\pi} = f(U)$.

Тангенс угла наклона этой прямой равен $\frac{q}{A \cdot k \cdot T}$ (что позволяет рассчитать величину параметра A), а отрезок, отсекаемый на оси ординат, дает значение $\ln I_{O.H}$. (при определенной температуре).

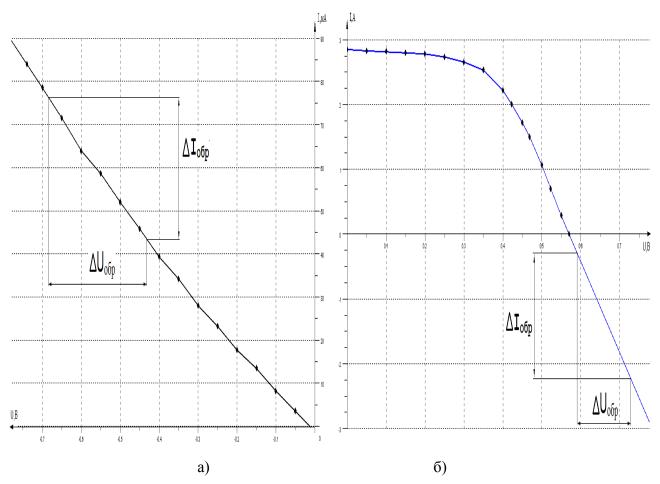


Рисунок 3- Обратная ветвь темновой и световой ВАХ

Для фотоэлемента на базе монокристаллического кремния площадью 98см² были найдены параметры схемы замещения, определенные по изложенной методике. В таблице 1 представлены результаты определения параметров схемы замещения.

Таблица 1- Параметры схемы замещения экспериментального образца.

$R_{II}(\mathrm{Om})$	$R_{III}(\mathrm{Om})$	$I_{O.H}(A)$	A
0.0615	7.5	4.26 ·10 ⁻³	3.5

В качестве *световой* характеристики использовалась зависимость полученная на заводе-изготовители при стандартных условиях(STK). *Темновая* ВАХ была получена экспериментально при помощи рекомендаций, которые изложены в [5].

Экспериментальный образец имеет следующие технические данные: ток короткого замыкания I_{K3} = I_{SC} =2850±25.6мA; напряжения холостого хода U_{XX} = = U_{OC} =0.57±0.001B;

коэффициент заполнения FF=0.553±0.01; КПД фотоэлемента Eff=9±1.13%; напряжение при макс. мощности U_M =0.375±0.001; ток при макс. мощности I_M =2390±25.6мA.

На основании данных таблицы 1 была получена моделируемая характеристика фотоэлемента, которая отличаются от заводской в диапазоне напряжений $U=0.25-0.4~\mathrm{B}$ приблизительно на 23% (показано на рисунке 4). Отклонение напряжения холостого хода моделируемой характеристики от заводской составляет $\Delta U_{XX}=0.009~\mathrm{B}$. На рисунке 4 пунктирная кривая это заводская характеристика; сплошна кривая — моделируемая характеристика построенная на основе параметров схемы замещения (Таблица 1).

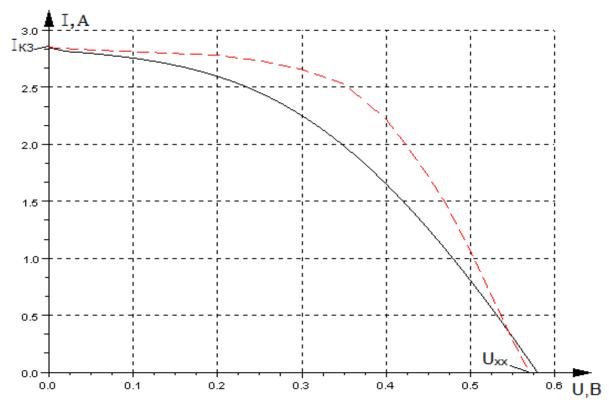


Рисунок 4 – ВАХ фотоэлемента

Перечень ссылок

- 1. Левшов А.В., Федоров А.Ю. Математическое моделирование фотоэлектрических систем в Matlab/Simulink // Наукові праці Донецького національного технічного університету. Серія «Електротехніка та енергетика» № 1 (14) Донецьк: ДВНЗ «ДонНТУ», 2013. С. 153-158.
- 2. Глиберман А.Я., Зайцева А.К / Ред. П.А. Попов. Кремневые солнечные батареи. М Л., Госэнергоиздат 1961. 72С.
 - 3. Колтун М.М. Оптика и метрология солнечных элементов. М.: Наука, 1985, 280 С.
- 4. Раушенбах Γ . Справочник по проектированию солнечных батарей: Пер. с англ. М.: Энергоатомиздат, 1983. 360С.
- 5. Лигачев В.А., Попов А.И. / Ред. А.И. Попов. Лабораторная работа "Спектральная чувствительность и вольт амперная характеристика солнечного элемента" по курсу "Физика и технология приборов основе некристаллических полупроводников" М.: изд-во МЭИ, 1999, 15 С.