РАЗРАБОТКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ САУ ПРОТИВОТОЧНЫМ ТЕПЛООБМЕННЫМ АППАРАТОМ

Зайцев В.А., студент

(ГВУЗ «Донецкий национальный технический университет», г. Донецк, Украина)

Актуальность.

Теплообменные аппараты являются неотъемлемой частью большинства технологических процессов, поэтому задача автоматизации противоточных теплообменных аппаратов является весьма важной вследствие существенной энергоемкости теплообменников и их широкой распространенности в промышленной практике.

Процессы передачи тепла с помощью теплообменников от одной жидкой среды к другой находят очень широкое применение в промышленной и коммунальной сфере, бытовом секторе. Часто мы просто пользуемся результатом теплообмена, не придавая этому никакого значения, не видя самого процесса.

Кожухотрубные теплообменники относятся к наиболее распространенным аппаратам. Их применяют для теплообмена и термохимических процессов между различными жидкостями, парами и газами – как без изменения, так и с изменением их агрегатного состояния.

Цель.

Повышение качества процесса управления системой автоматического управления теплообменным аппаратом за счет обзора известных решений управления теплообменниками, а также его анализа как объекта управления.

Постановка задачи.

Моделирование процесса управления температурой технологического потока на выходе из теплообменника при действии возмущающих воздействий и анализ качества управления теплообменным аппаратом.

Теплообменный аппарат как объект управления.

С учетом реальных условий работы, все существенные факторы, влияющие на процесс теплообмена, разбиваются на следующие группы [2]:

- 1. Контролируемые возмущения это те возмущения, которые можно измерить, но невозможно или недопустимо стабилизировать (расход питания, подаваемого непосредственно из предыдущего аппарата; температура окружающей среды и т.п.). Для исследуемого процесса такими возмущениями являются: температура теплоносителя $T^{\rm ex}_{\rm rop}$, а также температура и расход нагреваемого потока $T^{\rm ex}_{\rm xon}$, $G_{\rm xon}$ на входе в аппарат.
- 2. Неконтролируемые возмущения возмущения, которые невозможно или нецелесообразно измерять непосредственно. Первые это падение активности катализатора изменение коэффициентов тепло- и массопередачи и т.п. В качестве неконтролируемых возмущений в данном объекте может выступать накипь, образовавшаяся на поверхности трубок внутри теплообменника, а также давление пара, участвующего в теплообмене.
- 3. Выходные переменные. Из их числа выбирают регулируемые координаты. При построении замкнутых систем регулирования в качестве регулируемых координат выбирают технологические параметры, изменение которых свидетельствует о нарушении материального или теплового баланса в аппарате. К ним относятся: температуры теплоносителей $T^{\text{вых}}_{\text{гор}}$ и $T^{\text{вых}}_{\text{хол}}$.
- 4. Управляющие переменные входные сигналы объекта управления, с помощью которых можно влиять на режим работы объекта: величина расхода теплоносителя $G_{\text{гор}}$.

На рисунке 1 показана структурная схема поверхностного теплообменника.

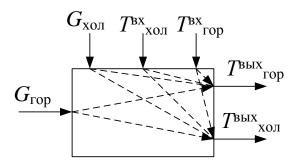


Рисунок 1 – Схема взаимосвязей между переменными в теплообменном аппарате

Регулирование поверхностных противоточных теплообменников заключается в поддержании постоянства температуры одного из теплоносителей на выходе из теплообменника, например, $T_{\rm x2}$.

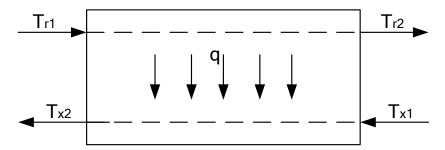


Рисунок 2 – Структурная схема поверхностного противоточного теплообменника

Температура T_{x2} зависит от скорости передачи тепла или теплового потока q через стенку; в свою очередь эта температура определяется движущей силой процесса или средним температурным напором ΔT_{cp} .

Для проведения моделирования зададимся начальными данными:

F=282 м² – поверхность теплообменника

 $v_1 = v_2 = 4400 \text{ м}^3/\text{ч} - \text{объемная скорость рабочих сред}$

 $c_1 = c_2 = 0.33 \text{ м}^3 * \text{град} - \text{удельная теплоемкость сред}$

 $\alpha_1 = \alpha_2 = 12 \text{ м}^2 * \text{ч} * \text{град} - \text{коэффициент теплоотдачи}$

G=5400 кг – вес теплообменных труб

 c_{cr} =0,115 кг*град – удельная теплоемкость материала поверхности теплообмена при установившемся режиме

 T_{1H} =470 ${}^{0}C$ – температура первичного теплоносителя

 T_{2H} =50 0 C – температура вторичного теплоносителя

С учетом изложенного выше математическая модель в рассматриваемой задаче примет вид:

$$\begin{split} T_{_{6blX1}} &= \frac{2}{\alpha_{1}F_{1}} * \frac{dQ_{1}}{dt} + 2T_{cm} - T_{_{6X1}} \\ T_{_{6blX2}} &= -\frac{2}{\alpha_{2}F_{2}} * \frac{dQ_{2}}{dt} + 2T_{cm} - T_{_{6X2}} \\ T_{_{cm}} - T_{_{cm0}} &= \frac{1}{G_{_{cm}}c_{_{cm}}} \int\limits_{0}^{t} (\frac{dQ_{1}}{dt} - \frac{dQ_{1}}{dt}) dt \\ \frac{dQ_{1}}{dt} &= v_{1}c_{1}(T_{_{6blX1}} - T_{_{6X1}}) \\ \frac{dQ_{2}}{dt} &= v_{2}c_{2}(T_{_{6blX2}} - T_{_{6X2}}) \end{split}$$

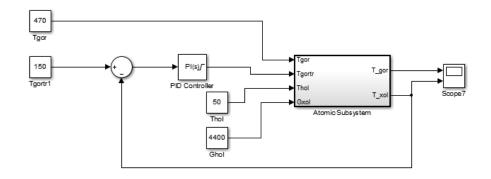


Рисунок 3 – Схема моделирования САУ

Исходя из данной математической модели, составим схему моделирования теплообменника:

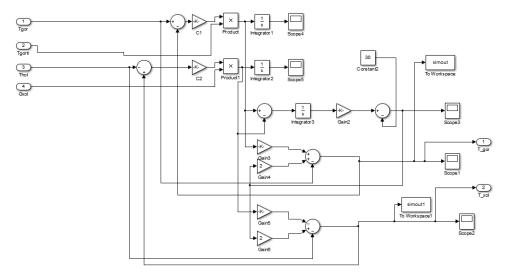


Рисунок 4 – Схема моделирования противоточным теплообменным аппаратом

Для регулирования требуемой температуры на выходе из теплообменника будем изменять расход горячего теплоносителя с помощью автоматически настроенного ПИ-контроллера.

В результате моделирования получаем следующие переходные процессы:

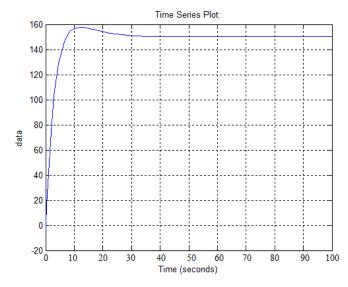


Рисунок 5 – Переходная характеристика горячего теплоносителя на выходе из теплообменника

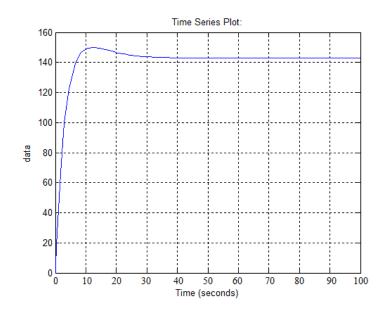


Рисунок 6 – Переходная характеристика холодного теплоносителя на выходе из теплообменника

Как видим полученные переходные характеристики имеют хорошие показатели качества управления системы: перерегулирование около 5%, время переходного процесса порядка 15 с.

Выводы.

- 1. Выделены существенные факторы, влияющие на процесс автоматизации.
- 2. Анализ теплообменного аппарата как объекта управления показал, что исследуемый объект автоматизации является сложным, многомерным и многосвязным объектом управления, что не учтено существующими системами автоматического управления.
- 3. Исходя из полученной математической модели и проведенного моделирования системы автоматического управления теплообменным аппаратом установлено, что данная модель теплообменника имеет хорошие показатели качества управления при правильно настроенном ПИ-регуляторе.

Перечень ссылок

- 1. Дудников Е.Г. Автоматическое управление в химической промышленности/ Е.Г. Дудников, А.В. Казаков, Ю.Н. Софиева, А.Э. Софиев, А.М. Цирлин Москва: Химия, 1987. 368 с.
- 2. Лапшенков Г.И. Автоматизация производственных процессов в химической промышленности/ Г.И. Лапшенков, Л.М. Полоцкий Москва: Химия, 1982. 377 с.
- 3. Иоффе И.Л. Проектирование процессов и аппаратов химической технологии/ И.Л. Иоффе Л.: Химия, 1991. 352 с.
- 4. Чернышев Н.Н. Математическое описание процесса теплообмена в противоточных теплообменных аппаратах / Н.Н. Чернышев, В.В. Турупалов, А.А. Прядко // Наукові праці Донецького національного технічного університету. Сер. обчислювальна техніка та автоматизація, випуск 21 (183). Донецьк: ДонНТУ. 2011, С. 55-60.
- 5. Чернышев Н.Н. Настройка регуляторов температуры газов в системе автоматического управления производства серной кислоты / Н.Н. Чернышев // Збірник наукових праць Інституту проблем моделювання в енергетиці ім. Г.Є. Пухова, гол. ред. В.Ф.Євдокимов. Київ: Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова, 2012. Випуск 65. С. 101-107.