Одностадийный процесс получения метана газификацией отходов переработки древесины

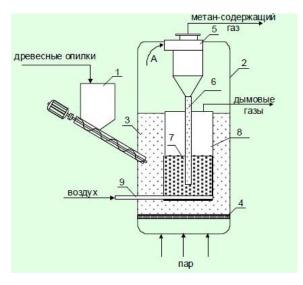
Полтавский Е. А. $(T \ni C - 09M)$, Филатова Е. А. $(T\Pi - 09M)^*$ Донецкий национальный технический университет

Для процесса газификации возможно использование следующих видов древесной биомассы:

- деловая древесина (преимущественно хвойных пород);
- низкосортная древесина (лиственные породы);
- некондиционная древесина (переспелая, пораженная фитовредителями и пожарами);
- вторичные древесные ресурсы (отходы лесозаготовки и переработки древесины, включая ветки, кору, хвою, опилки, стружки и прочие).

Таблица - Химический состав древесины

тионици типин теский состив древесниви				
Традиционное	Целлюлоза, %	Пентозаны, %	Лигнин, %	Растворимы
название	целлюлоза, 70	Tichiosandi, 70	Лигнин, 70	в воде, %
Пихта	49,4	7,0	27,7	3,6
Лиственница	41,5	8,9	26,4	13,8
Ель	46,0	8,3	27,3	2,0
Сосна	52,2	8,2	26,3	4.1
Береза	45,3	25,3	23,9	2,5
Осина	46,3	24,5	21,8	7,8


При газификации биомассы требуется меньше водяного пара, чем при газификации угля, поскольку карбогидраты биомассы в достаточной степени окислены И содержат много связанной воды.Щелочные катализаторы (карбонаты натрия, калия и др.) значительно увеличивают выход синтез-газ, обогащенного метаном, при газификации биомассы водяным паром при температурах 550-750 °C и давлениях 0,1-1,0 МПа.Разрабатываются процессы газификации биомассы В псевдоожиженном ИЛИ неподвижном слое катализатора. Для очистки продуцируемого газа от смол применяются катализаторы, в том числе – монолитного типа. Для получения газа с низким содержанием смол используются двухстадийные процессы, включающие стадии карбонизации биомассы и последующей газификации угля. Для разработки одностадийного процесса газификации биомассы, обеспечивающего получение газа с повышенным содержанием метана, были решены задачи по дизайну специального аппаратурного оформления процесса и подбору дешевых и доступных катализаторов. Тепло, необходимое для поддержания процесса газификации, поступает в реактор за счет трех основных источников: перегретого водяного пара; реакции метанирования, протекающей в псевдоожиженном слое катализатора; сжигания части углеродного продукта. Подбор каталитически активных материалов для псевдоожиженного слоя

_

 $^{^{*}}$ Руководитель – к.т.н., доцент кафедры ПТ Пархоменко Д. И.

проводился среди шлаков металлургических производств, которые отличаются высокой механической и термической стойкостью. В качестве образца сравнения использовали катализатор метанирования «АНКМ-1Э» «Ангарский завод катализаторов и органического синтеза».(Катализатор соответствует ТУ 2178-036-47317879-97, после прокаливания при 800 °C содержит 34-38 % NiO и не менее 48 % Al₂O₃). Мартеновский шлак, прошедший специальную активацию проявляет довольно высокую активность метанировании, достигающую 40 % OT соответствующего показателя промышленного катализатора. Использование псевдоожиженного шлака,каталитически мартеновского активного реакции гидрирования моноксида углерода приводит к существенному увеличению концентрации метана в продуцируемом из древесных опилок газе. По сравнению с газификацией в псевдоожиженном слое инертного материала – кварцевого песка, наблюдаемое увеличение содержания метана составило 48-54 % отн. Некоторое снижение выхода продуцируемого метансодержащего газа по объему (на 12-15 % отн.) сопровождается существенным возрастанием теплоты сгорания газа (на 30 % отн.). Наблюдается также снижение расхода пара в расчете на кг древесного сырья за счет выделения дополнительного тепла при протекании реакций метанирования. Разработанный процесс газификации позволяет получать ИЗ древесных отходов метансодержащий калорийностью на 30% выше, чем при обычной паровой газификации, а доля потенциального тепла исходного сырья, перешедшая в потенциальное тепло продуцируемого газа увеличивается на 10 %.

Принципиальная схема установки газификации биомассы в псевдоожиженном слое катализатора метанирования показана на рисунке 1.

- 1 бункер-питатель;
- 2 реактор;
- 3 псевдоожиженный слой катализатора;
- 4 газораспределительная решетка;
- 5 встроенный циклон;
- 6 труба для стока древесного угля;
- 7-псевдоожиженый слой древесного угля;
- 8 камера сгорания;
- 9 инжектор для подачи воздуха

Рисунок – Принципиальная схема установки газификации биомассы.

Указанная технология получения метана из отходов древесины позволяет получать газообразное топливо пригодное для использования в теплоэнергетике.