
ЭФФЕКТИВНОСТЬ РАСПРЕДЕЛЕНИЯ ОБЖАТИЙ ПО ПРОХОДАМ ПРИ РЕДУЦИРОВАНИИ СЛЯБОВ В УНИВЕРСАЛЬНОЙ РЕВЕРСИВНОЙ КЛЕТИ

Воропаева С.О. *(ОМД-12 м)** Донецкий национальный технический университет

Редуцирование слябов на 200-300мм в первых черновых клетях широкополосного стана получила широкое распространение в мировой практике, так как позволяет весь сортамент широких полос по ширине получать из непрерывно литых слябов нескольких размеров по ширине и сократить число кристаллизаторов при их отливке. На металлургических предприятиях Украины горячекатаные широкие полосы производят по устаревшей схеме «слиток –обжимной стан (слябинг) - широкополосный стан». Переход на современную схему производства широких полос «машина непрерывной разливки заготовок – широкополосный стан с редуцирующей черновой клетью» позволит значительно снизить энергетические и материальные затраты. В этой связи внедрение технологии редуцирования требует решения актуальной задачи по деформационным режимам редуцирования слябов.

Технология редуцирования слябов в универсальной черновой клети может включать одно-трехразовые последовательные обжатия в вертикальных валках (ВВ) в реверсивных проходах с проглаживанием широких граней в горизонтальных валках (ГВ) до исходной толщины после первого и третьего проходов. На рисунке показана схема обжатий сляба по трем реверсивным проходам в ВВ и ГВ универсальной клети.

 \rightarrow проходы с рабочим обжатием; --- \rightarrow холостой проход; 50,0-расстояние от печи; 3,0 – расстояние между ВВ и ГВ

Рисунок – Схема обжатий в ВВ и ГВ универсальной черновой клети

От характера распределения обжатий в BB по проходам во многом зависит эффективность процесса редуцирования. В качестве критериев рационального распределения обжатий выбрали: суммарные (за три прохода) значения величин: коэффициента эффективности уменьшения ширины $\eta_{\text{сум}}$, расхода металла в концевую обрезь M_o , расход энергии $P_{\text{э}}$.

^{*} Руководитель – д.т.н., профессор кафедры ОМД Руденко Е.А.

Исследование выполнили методом математического моделирования с использованием пакета программ «Универсал», разработанного в Дониксе и ДонНТУ. Моделировали редуцирование слябов толщиной 240 мм, шириной 1200 и 1800 мм, длиной 10 м в универсальной клети. Катающий диаметр ВВ 1350 мм, горизонтальных — 1400 мм. Глубина ручья калибра ВВ 150 мм, выпуск 0,4. Суммарное обжатие в ВВ приняли равным 225 мм. Обжатия $\Delta B_{\rm B}$ по проходам устанавливали по трем режимам: №I - с возрастанием, №II – с уменьшением и №III -одинаковые. Определяли ширину после ВВ ($B_{\rm e}$), после ГВ в каждом прямом проходе ($B_{\rm e}$) и уменьшение после первого прохода ($\delta B_{\rm ee}$) и суммарное после третьего прохода ($\delta B_{\rm con}$). Результаты представлены в таблице.

Таблица - Эффективность режимов редуцирования

R	No	<u>№</u>	ΔB_{e}	ΔH ,				тов ред Бр				D
B_c ,					B_{e}	B_{ε} ,	$\delta\!B_{e\Gamma}$	δB_{cym}	η	$\eta_{\scriptscriptstyle {\it CYM}}$	M_o ,	$P_{\mathfrak{I}}$
MM	реж.	прох	MM	MM	Мм	MM	MM	MM			КГ	Квтч/т
1216	I	1	50	14	1166	1181	15		0,7			
		2	75	-	1106							
		3	100	41	1006	1045	39	171	0,78	0,76	138	1,8
	II	1	100	26	1116	1146	30		0,7			
		2	75	-	1071							
		3	50	29	1021	1053	32	163	0,75	0,73	657	1,8
	III	1	75	20	1141	1164	23		0,69			
		2	75	-	1089							
		3	75	35	1014	1049	35	167	0,77	0,74	423	1,8
1824	I	1	50	11	1774	1791	17		0,66			
		2	75	-	1716							
		3	100	26	1616	1657	41	167	0,77	0,74	677	1,3
	II	1	100	18	1724	1757	33		0,67			
		2	75	-	1682							
		3	50	19	1632	1666	34	158	0,73	0,7	1419	1,4
	III	1	75	14	1749	1774	25		0,67			
		2	75	-	1699							
		3	75	22	1624	1662	38	162	0,75	0,72	1118	1,4

Из таблицы видно, что эффективность уменьшения ширины в первом проходе($\eta = \delta B_{sc}/\Delta B_{s}$) при редуцировании узких слябов выше, чем широких, но не зависит от величины обжатия (номера режима). Эфективность за два последних прохода и за три прохода ($\eta_{cym} = \delta B_{cym}/\Delta B_{s-cym}$) выше в режиме № с увеличивающими обжатиями и при редуцировании узких слябов выше, чем широких. Величина концевой обрези также минимальная в режиме с увеличивающимися обжатиями по проходам и значительно ниже (в два-четыре раза) при редуцировании узких слябов. Меньшая величина расхода энергии при редуцировании широких слябов обусловлена большей их массой.