обеспечивает учет взаимосвязи моделей и задач, используемых для оптимизации параметров системы в соответствии с той их декомпозицией, которую предопределяет эта методическая схема.

Литература.

1. Цвиркун А.Д., Акинфиев В.К. Структура многоуровневых и крупномасштабных систем. – М.: Наука, 1993. – 160 с.

Пантеев Р.Л., Поздняков Е.К., Коротков В.В., Ткаченко В.Н.

Публичное акционерное общество «ТОПАЗ»

Применение функций чувствительности при оценке погрешности измерения координат разностнодальномерным методом

Важной задачей, при разработке сложных систем, является конкретизация общих тактико-технических требований, изложенных в техническом задании на систему, применительно к ее составным частям. В данной работе для решения подобных задач предлагается использовать функции чувствительности.

Преимущества использования функций чувствиительности показаны на примере пассивной радиолокационной системы мониторинга воздушного пространства.

В состав системы входят четыре пространственноразнесенных станции C, R, L и Q (рис. 1), а для расчета координат используется разностно-дальномерный метод.



Рис. 1. Пассивная система мониторинга воздушного пространства

Для определения координат объекта в текущий момент времени необходимо решить систему уравнений (1), получивших название – гиперболических.

$$\tau_{L} = \frac{1}{c} \cdot (\overline{OL} + \overline{LC} - \overline{OC}) = f(x_{1}, x_{2}, x_{3})$$

$$\tau_{R} = \frac{1}{c} \cdot (\overline{OR} + RC - \overline{OC}) = g(x_{1}, x_{2}, x_{3})$$

$$\tau_{Q} = \frac{1}{c} \cdot (\overline{OQ} + \overline{QC} - \overline{OC}) = h(x_{1}, x_{2}, x_{3})$$
(1)

 $\tau_{L,R,O}$ - задержки времени прихода сигнала на станции

$$F_{L} = \frac{1}{c} \cdot \left(\sqrt{x_{1} - x_{1L}} \right)^{\frac{2}{2}} + (x_{2} - \frac{x_{2L}}{2L})^{\frac{2}{2}} + (x_{3} - \frac{x_{3L}}{3L})^{\frac{2}{2}} + D_{L} - \sqrt{x_{1}^{2} + x_{2}^{2} + x_{3}^{2}} \right) - \tau_{L} c$$

$$F_{R} = \frac{1}{c} \cdot \left(\sqrt{x_{1} - x_{1R}} \right)^{\frac{2}{2}} + (x_{2} - \frac{x_{2R}}{2R})^{\frac{2}{2}} + (x_{3} - \frac{x_{3R}}{3R}) + D_{R} - \sqrt{x_{1}^{2} + x_{2}^{2} + x_{3}^{2}} \right) - \tau_{R} c$$

$$F_{Q} = \frac{1}{c} \cdot \left(\sqrt{(x_{1} - x_{1Q})^{\frac{2}{2}} + (x_{2} - x_{2Q})^{\frac{2}{2}} + (x_{3} - x_{3Q})^{\frac{2}{2}}} + D_{Q} - \sqrt{x_{1}^{2} + x_{2}^{2} + x_{3}^{2}} \right) - \tau_{Q} c$$

$$D_{L} = LC, D_{R} = RC, D_{Q} = QC$$

$$(2)$$

 x_1, x_2, x_3 - координаты цели

 x_{1L} , x_{2L} , x_{3L} - координаты станции L x_{1R} , x_{2R} , x_{3R} - координаты станции R x_{1Q} , x_{2Q} , x_{3Q} - координаты станции Q

Пусть известна $\sigma_i^{\ \tau}$ погрешность (с.к.о.) измерения времен задержек $\tau_{L,R,Q}$, поступления сигнала на станции.

Положение координат ИРИ вычисляется путем нахождения корней системы уравнений (2). При условии точного измерения времени τ_0 , получим точное решение системы (2) x_0 . Необходимо получить оценку положения ИРИ при ошибочных величинах компонента вектора $\tau = [\tau_1, \tau_2, \tau_3]$, где $\tau_1 = \tau_L$, $\tau_2 = \tau_R$, $\tau_3 = \tau_O$. С этой целью разложим вектор x в ряд Тейлора в окрестности точного положения ИРИ x_0 , ограничиваясь его линейной частью:

$$x(\tau_0 + \Delta \tau) = x(\tau_0) + \frac{\partial x}{\partial \tau}\Big|_{\tau = \tau} (\Delta \tau), \qquad (3)$$

$$x(\tau_0 + \Delta \tau) - x(\tau_0) = \frac{\partial x}{\partial \tau} \left(\Delta \tau \right)$$
 (4)

Величина смещения Δx координаты положения, вызванная погрешностью измерения времени задержки на величину $\Delta \tau$ определяется через коэффициент чувствительности следующим соотношением:

$$\Delta x(\tau_0 + \Delta \tau) = \frac{\partial x}{\partial \tau} \Big|_{\tau = \tau_0} (\Delta \tau)$$
 (5)

где

$$\frac{\partial x}{\partial \tau}\Big|_{\tau=\tau} = \begin{bmatrix}
\frac{\partial x_1}{\partial \tau} & \frac{\partial x_1}{\partial \tau_2} & \frac{\partial x_1}{\partial \tau_3} \\
\frac{\partial x_2}{\partial \tau_1} & \frac{\partial x_2}{\partial \tau_2} & \frac{\partial x_2}{\partial \tau_3} \\
\frac{\partial x_3}{\partial \tau_1} & \frac{\partial x_3}{\partial \tau_2} & \frac{\partial x_3}{\partial \tau_3} \\
\frac{\partial x_3}{\partial \tau_1} & \frac{\partial x_3}{\partial \tau_2} & \frac{\partial x_3}{\partial \tau_3}
\end{bmatrix}$$
(6)

Каждая координата x_i вектора положения x получит соответствующее приращение в связи с ошибками измерения времени задержки, а именно:

$$x_i (t_0 + \Delta \tau) = x_i (t_0) + \sum_{j=1}^{3} \frac{\partial x_i}{\partial \tau_j} \Delta \tau_j , \quad i = 1 \quad 3$$
 (7)

Соотношение (7) содержит ошибку измерения координаты ИРИ, пропорциональную ошибке измерения времени задержки $\Delta \tau_i$, коэффициентом

пропорциональности при этом является функция чувствительности координаты x_i к изменению времени задержки, $\frac{\partial x_i}{\partial \tau_i}$.

Использование функций чувствительности, позволяет определить требования к подсистеме измерения времен задержки при расчете координат разностнодальномерным методом, в зависимости необходимой точности измерения координат системой в целом.

Литература.

- 1. Ортега Дж., Рейнболдт В. Итерационные методы решения нелинейных систем уравнений со многими неизвестными. Мир, Москва, 1975. 558 с.
- 2. Аверьянов, В. Я. Разнесенные радиолокационные станции и системы. Наука и техника, Минск, 1978. 184 с.

- 3. Черняк, В. С. Многопозиционная радиолокация. Радио и связь, Москва, 1993.-415с.
- 4. Радиоэлектронные системы: справочник. ЗАО "Маквис", Москва, 1998. 828 с.