ВЛИЯНИЕ ПАРАМЕТРОВ ПОЛЯ ГАЛУА И ПЕРЕМЕЖЕНИЯ НА ИЗБЫТОЧНОСТЬ КОДА РИДА-СОЛОМОНА

И.В. Юрьев, О.Н. Дяченко

Донецкий национальный технический университет Кафедра компьютерной инженерии E-mail: gefest881@rambler.ru

Аннотация

Рассмотрено влияние параметров кодов Рида-Соломона на избыточность, корректирующие возможности и скорость кодов, а также на аппаратные затраты их реализации.

Введение

При проектировании современных систем коммуникаций одной из важнейших является задача обеспечения высокой достоверности передачи информации, а также её хранение и обработка. Для обеспечения помехоустойчивости информации применяют коды, обнаруживающие и исправляющие ошибки, возникающие в ходе работы системы и её элементов.

Коды Рида-Соломона — циклические коды, позволяющие исправлять ошибки в блоках данных. Элементами кодового слова являются не биты, а группы битов (блоки). В настоящее время широко используются коды Рида-Соломона для космической связи NASA, цифрового телевидения высокого разрешения (формат HDTV), в системах восстановления данных с компакт-дисков, в контроллерах оперативной памяти, в модемах, в жестких дисках, при создании архивов с информацией для восстановления в случае повреждений и т.д. [1-2]. А также они не исчерпали свои возможности и преимущества и в других приложениях, таких, как например, задачи криптографии, устройствах компактного тестирования и т.д.

Вместе с тем, несмотря на известные схемотехнические решения построения кодов, а также кодирующих и декодирующих устройств, их реализующих, информация о них - платная. Например – исправление ошибок в CD дисках.

Популярность этих кодов заключается в высоких корректирующих возможностях - исправление пакетов и множественных пакетов ошибок.

Данная работа посвящена рассмотрению влияния параметров кода Рида-Соломона на избыточность кода.

Порождающие полиномы кодов Рида-Соломона

Коды Рида-Соломона являются частным случаем кодов БЧХ. Главное отличие кодов Рида-Соломона заключается в том, что в качестве символа выступает не двоичный символ (один бит), а элемент поля Галуа (несколько битов).

Порождающий полином кода Рида-Соломона, исправляющего s ошибок, должен содержать 2s корней:

$$\{\alpha_0^j, \alpha_0^{j+1}, \alpha_0^{j+2}, ..., \alpha_0^{j+2s-1}\},\$$

где j_0 – конструктивный параметр.

Как правило, j_0 выбирают равным 1. Тогда множество корней полинома принимает вид $\{\alpha, \alpha^2, \alpha^3 \dots \alpha^{2s}\}.$

Для кода Рида-Соломона, исправляющего s ошибок, порождающий полином имеет следующий вид:

$$RS(X) = (X - \alpha)(X - \alpha^2)(X - \alpha^3)...(X - \alpha^{2s}),$$

При таком представлении порождающий полином имеет множество корней $\{\alpha, \alpha^2, \alpha^3... \alpha^{2s}\}.$

Сущность помехоустойчивого кодирования заключается во введении в первичные коды избыточности. Поэтому помехоустойчивые коды называют избыточными. Задача помехоустойчивого кодирования заключается в таком добавлении к информационным символам первичных кодов дополнительных символов, чтобы в приемнике информации могли быть найдены и исправлены ошибки, возникающие под действием помех при передаче кодов по каналам связи. Формула вычисления избыточности имеет вид: R=p/n, где p-k количество проверочных символов, k-k по следующей формуле k-k рефервольности имеет вычисляется по следующей формуле k-k рефервольности имеет виде k-k рефервольности k-k

Длина исправляемого пакета ошибок для последовательного кода без каких-либо ограничений равна t=j*b-(b-1) для посимвольно перемеженного кода Рида-Соломона поля Галуа $GF(2^b)$ с параметром перемежения j.

Схему посимвольно перемеженного кода Рида-Соломона можно получить из схемы исходного кода, вставив дополнительно к каждому элементу памяти j-1 элементов. Например, для поля $GF(2^3)$ при перемежении с параметром j=2 каждую триаду элементов памяти нужно заменить двумя последовательно включенными триадами.

Чтобы из (n, k)-кода получить (jn, jk)-код, выберем из исходного кода ј произвольных кодовых слов и укрупним кодовые слова, чередуя их символы. Если исходный код исправлял произвольный пакет ошибок длины d, то, очевидно, результирующий код будет исправлять все пакеты ошибок длины jd. Например, применяя метод перемежения к четырём копиям (31, 25)-кода, исправляющего пакет ошибок длины 2, получаем (124, 100) – код, который может исправлять пакет ошибок длины 8 [3].

Для циклических кодов метод перемежения приводит к циклическим кодам. Предположим, что исходный код порождается полиномом g(X). Тогда порождающий полином получаемого перемежением кода равен $g(X^j)$. Заметим, что перемежение символов нескольких информационных полиномов с последующим умножением на $g(X^j)$ даёт то же самое кодовое слово, что и умножение каждого из исходных информационных полиномов на g(X) с последующим перемежением этих слов (n, k)-кода.

Влияние параметров кодов Рида-Соломона на избыточность

Избыточность кода и его скорость зависит, прежде всего, от количества исправляемых ошибок, которое задаётся при построении кода.

Для изменения избыточности кода применяют такие подходы [4, 5]:

- 1) изменение параметра b поля Галуа (2^b), на основе которого строится код;
- 2) метод посимвольного перемежения кодов.

Вначале рассмотрим параметры кодов в символах элемента поля Γ алуа $GF(2^b)$.

Для s=1: p=2, $n=2^b-1$, $R=p/n=2/(2^b-1)$.

Исправляется один b-битный символ. Чем больше b, тем меньше избыточность, следовательно, больше скорость кода. Корректирующие возможности и аппаратные затраты увеличиваются. Зависимость избыточности кода от его параметров представлены в таблице 1.

Для s=2: p=4, $n=2^b$ -1, $R=p/n=4/(2^b$ -1). Избыточность в 2 раза больше, чем для s=1.

Исправляются два b-битных символа, расположенных в любых двух символах из кодового слова длины 2^b -1.

Чем больше b, тем меньше избыточность, следовательно, больше скорость кода.

Корректирующие возможности увеличиваются в C_2^n раз (по сравнению с s=1), а аппаратные затраты увеличиваются незначительно, так как длина кода п одинакова для s=1 и

Таблица 1. Зависимость параметров и избыточности кода при постоянном значении s=1

GF	р	n	R
GF(4)	2	3	0,67
GF(8)	2	7	0,29
GF(16)	2	15	0,13
GF(32)	2	31	0,065
GF(64)	2	63	0,032
GF(128)	2	127	0,016
GF(256)	2	255	0,008

s=2. Однако скорость кода в 2 раза меньше, поскольку избыточность кода R в 2 раза больше.

Рассмотрим избыточность и корректирующие возможности кодов в символах двоичной последовательности b-битов (применение кодов Рида-Соломона для исправления пакетов ошибок).

Для случая с ограничением характера расположения ошибок получаем такой же результат, как рассмотренный ранее для символов элементов поля Γ алуа (2^b).

Для произвольного расположения пакетов ошибок: для s=1 длина исправляемого пакета t=1 (всего 1 бит). Это можно пояснить следующим образом. При длине пакета t=2 в наихудшем случае один искаженный бит может оказаться в одном принятом символе кодового слова (b — двоичных символов), а второй — в другом соседнем символе, что равносильно двойной ошибке для кодов Рида-Соломона. Поскольку код построен для исправления одиночной ошибки, то рассмотренная ошибка неисправима.

В случае кодов Рида-Соломона, исправляющего две ошибки (s=2) длина произвольного расположенного исправляемого пакета ошибок t=b+1. Это объясняется тем, что в наихудшем случае при t=b+2 один искаженный бит может оказаться в одном символе кодового слова (b — двоичных символов), b искаженных двоичных битов — во втором символе, и еще один искаженный бит — в третьем символе. Таким образом, получили тройную ошибку, которую декодер кода Рида-Соломона не сможет исправить, поскольку построен для кода, исправляющего двойную ошибку. Вместе с тем, любой пакет ошибок искаженных битов длины t=b+1 не сможет расположиться в трех соседних символах принятого кодового слова кода Рида-Соломона. Поэтому, он будет исправим.

Таким образом, для одиночного исправляемого пакета максимальной длины увеличение b для s=1 нерационально; для s=2 увеличение длины исправляемого пакета незначительно по сравнению с методом перемежения.

Поэтому применение кодов Рида-Соломона, исправляющих одиночные ошибки, для исправления пакетов ошибок рационально только в случае их посимвольного перемежения.

Для произвольного расположения пакетов ошибок максимальной длины: для s=1 t=j*b-(b-1); для s=2 t=2*(j*b-(b-1)), где j — параметр перемежения. Как видно из приведенных выражений зависимости длины исправляемого пакета ошибок, для обоих вариантов кода Рида-Соломона, допускающих синдромное декодирование, она значительно зависит не только от параметра перемежения j, но также от параметра b поля a b0.

Избыточность R=j*p/j*n=p/n — не изменяется, следовательно, скорость кода также не изменяется, аппаратные затраты возрастают в j раз.

При посимвольном перемежении для s=1 появляются, а для s=2 увеличиваются дополнительные возможности исправления множественных пакетов ошибок. Однако при построении кодов следует ориентироваться на максимальную длину гарантированно исправляемого пакета ошибок, поскольку в большинстве случаев, в особенности, на носителях информации (радиальные царапины на CD-дисках, дефекты в запоминающих устройствах и др.), ошибки сгруппированы в одиночные пакеты.

На рисунках 1-3 представлены примеры схемной реализации декодеров кодов Рида-Соломона с полем Галуа GF(8) и GF(16), исправляющих одиночные или двойные ошибки

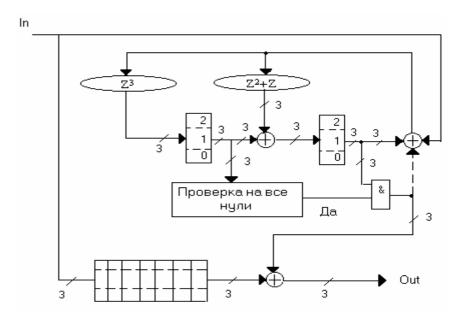


Рисунок 1 - Декодер кода Рида-Соломона для поля Галуа GF(8) при s=1

(параметры s=1 и s=2), без перемежения и с параметром перемежения j=2 при s=2.

Кодеры для соответствующих кодов аналогичны по построению декодерам кодов Рида-Соломона, а также кодерам циклического кода Хэмминга и кодерам кода БЧХ.

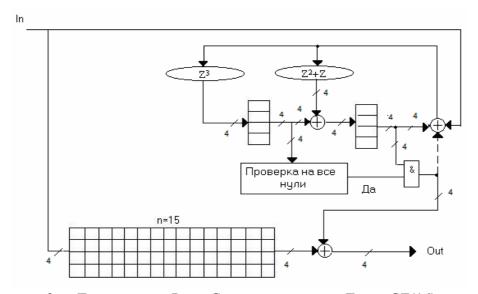


Рисунок 2 - Декодер кода Рида-Соломона для поля Галуа GF(16) при s=1

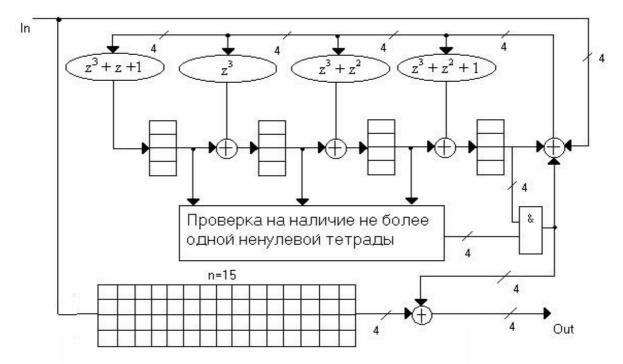


Рисунок 3 - Декодер кода Рида-Соломона для поля Галуа GF(16) при s=2

Вывод

Применение кодов Рида-Соломона, исправляющих одиночную ошибку, для исправления пакетов ошибок рационально только в случае их посимвольного перемежения.

Увеличение параметра b поля Γ алуа $GF(2^b)$, на основе которого строится код Рида-Соломона, уменьшает избыточность. Метод посимвольного перемежения не изменяет избыточность кода.

При перемежении для кодов Рида-Соломона, исправляющих одиночную ошибку, появляются, а для кодов Рида-Соломона, исправляющих двойную ошибку, увеличиваются дополнительные возможности исправления множественных пакетов ошибок. Однако при построении кодов следует ориентироваться на максимальную длину гарантированно исправляемого пакета ошибок.

Список литературы

- 1. Robert H. Morelos-Zaragoza. The Art of Error Correcting Coding. First Edition, John Wiley & Sons, 2002. 221p.
- 2. Код Рида-Соломона. Википедия, свободная энциклопедия. Электронный ресурс. Режим доступа: http://ru.wikipedia.org/wiki/Код_Рида_—_Соломона
- 3. Richard E.Blahut. Theory and Practice of Error Control Codes. Addison-Wesley Publishing Company, Massachusetts, 1984. 576p.
- 4. Юрьев И.В., Дяченко О.Н. Определение оптимальных параметров кодов Рида-Соломона // Інформатика та комп'ютерні технології / Матеріали V міжнародної науково-технічної конференції студентів, аспірантів та молодих науковців — 24-26 листопада 2009 р., Донецьк, ДонНТУ. — 2009. — С. 82-88.
- 5. Дяченко О.Н. Аппаратная реализация и корректирующие возможности кодов Рида-Соломона// Наукові праці Донецького національного технічного університету. Серія "Проблеми моделювання та автоматизації проектування динамічних систем" (МАП-2007). Випуск: 6 (127) - Донецьк: ДонНТУ. - 2007. — С.113-121.