УДК 613.31:546.13

Фомина Е. С., Трошина Е. А. (ДонНТУ)

МОНИТОРИНГ КАЧЕСТВА ВОДЫ И ДОННЫХ ОТЛОЖЕНИЙ ПОВЕРХНОСТНЫХ ВОДОЕМОВ г. ДОНЕЦКА

Проведены исследования вод и донных отложений р. Кальмиус, его притоков и прудов в черте г. Донецка на содержание тяжелых металлов (Cd, Pb, Cu, Mn, Fe) и ряда гидрохимических показателей (NO_3^- , NO_2^- , NH_4^+ , СПАВ, нефтепродукты). Выявлена необходимость контроля содержания указанных тяжелых металлов в воде городских прудов. Параллельно проведены биотестирования вод с использованием высшего сосудистого растения Allium Cepa. Полученные результаты говорят о негативном влиянии промышленной деятельности г. Донецка на качество вод реки, балок и прудов в черте города.

Природная среда Донецкого региона испытывает наибольшую антропогенную нагрузку среди областей Украины. Общий сброс сточных вод в водоемы Донецкой области за период 2002–2007 г.г. изменялся незначительно и был в пределах 1620–1705 млн. м³ [1]. Однако сброс неочищенных и недостаточно очищенных стоков в речную сеть за 2007 г значительно превышает объёмы сбросов за 2002 г. — в 7,2 и 1,3 раза соответственно. Проблема водных объектов Донецкой области заключается и в том, что малые реки, за счет которых формируются водные ресурсы, являются не только приемниками промышленных и хозяйственно-бытовых сточных вод, а также источниками водоснабжения для различных пользователей.

Шахтные воды являются одним из главных источников загрязнения рек и водоемов области. Угольными предприятиями, которых в области насчитывается около 200, ежегодно в гидрографическую сеть сбрасывается около 300 млн. м³ шахтных вод. В результате закрытия многих шахт объем сброса шахтных вод несколько сократился, однако шахты остаются основными загрязнителями водных объектов. Все шахтные воды относятся к категории «загрязненных». Это обусловлено их высокой минерализацией, снижение которой до нормативов ПДС не производится в виду отсутствия экономичных методов очистки.

Главная водная артерия Донецкой области р. Кальмиус является приемником сточных вод шахт, металлургических заводов и коммунальных предприятий. В то же время эта река используется как источник хозяйственно-питьевого и производственного водоснабжения. С другой стороны, протекая по территории г. Донецка, р. Кальмиус является местом отдыха горожан. В рекреационных целях также используются многие городские пруды.

В этой связи нами была выделена важная проблема исследования содержания токсичных веществ, в частности, тяжёлых металлов, в водоемах и водотоках г. Донецка.

Тяжелые металлы (ТМ) относятся к группе неконсервативных металлов, которых в воде, почве, иле зависит ОТ температуры, солесодержания, величины рН, наличия неорганических и органических комплексообразователей, биологической активности, поры года. Микроорганизмы планктона концентрируют по сравнению с водой медь в 90000 раз, свинец в 12000 раз, кобальт в 16000 раз интенсивнее [2, 3].

Содержание ТМ в организмах и значение коэффициентов аккумуляции находятся в тесной зависимости от щелочности, рН, содержания органических веществ в воде и других факторов, которые регулируют физико-химическое состояние ТМ в водной среде. Тяжелые металлы являются мутагенными веществами, о чем свидетельствует их присутствие в ДНК живых организмов (табл. 1) [4, 5].

Таблица 1. Способность тяжелых металлов вызвать мутагенные изменения у некоторых классов организмов

		Присутствие в			
Металл	микро-	растения	насеко-	млекопи-	Присутствие в ДНК
	организмы		мые	тающие	
Медь	-	+	+	-	+
Свинец	+	-	+	+	-
Марганец	+	+	+	+	+
Кадмий	+	+	+	+	+

Генотоксические и цитотоксические эффекты ионов тяжелых металлов определяются тем, что они очень легко связываются с сульфгидрильными группами белков (в т.ч. и ферментов), затрудняя синтез макромолекул и в целом обмен веществ в клетке. Ионы тяжелых металлов значительно крепче связываются с большинством органических лигандов, чем ионы магния и кальция. Это приводит к конкурентным взаимоотношениям указанных ионов за места связывания в активных центрах многих ферментов [6].

Все вышесказанное обусловливает необходимость мониторинга содержания тяжелых металлов в водных объектах г. Донецка.

Материалы и методы исследования

Пробы воды из р. Кальмиус, из балок и водохранилищ отбирали в январе—августе 2007 года в 10 точках: первая точка — на входе р. Кальмиус в г. Донецк, точки 2, 3, 4 — в средней части и пятая точка — на выходе реки из города. Точки отбора проб в притоках: 6 — балка Игнатьевская, 7 — балка Калиновая, 8 — балка Пограничная, 9 и 10 — балка Безымянная в истоке и впадении в р. Кальмиус соответственно.

Также были отобраны пробы воды из 15 прудов г. Донецка в течение апреля—августа 2007 г. Точки отбора проб представлены на рис. 1. Донные отложения отбирались только в точках 5, на выходе р. Кальмиус из города, и 10 — при впадении балки Безымянная в р. Кальмиус. Пробы воды отбирали в объеме не менее 2–3 дм³ в пластиковые и стеклянные бутыли, предварительно промытые разбавленной азотной кислотой и дистиллированной водой. Донные отложения отбирали в количестве не менее 0,5 кг в стеклянные бутыли, обработанные аналогично.

В отобранных пробах воды и донных отложениях определяли валовое содержание тяжёлых металлов (Cd, Pb, Cu, Mn, Fe) методом атомно-абсорбционной спектрофотометрии с электротермической атомизацией в соответствии со стандартной методикой [7] и рекомендациями [8]. Пробоподготовку донных отложений проводили по стандартной методике [9] с использованием концентрированной азотной кислоты и 30%-ного пероксида водорода. Гидрохимические показатели определяли в соответствии со стандартными методиками [10–14].

Параллельно проводили биотестирование проб с использованием высшего сосудистого растения *Allium Cepa* (лук обыкновенный) по методике [15].

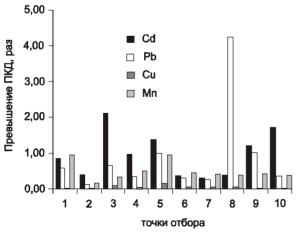


Рис.1. Точки отбора проб воды и донных отложений поверхностных водоемов г. Донецк

После трёхдневного проращивания луковиц в исследуемых образцах воды производили подсчёт длины корешков и сравнение их с контролем и рассчитывали коэффициент ингибирования роста корешков (K_i), согласно которому оценивали интегральную токсичность проб воды. Если коэффициент ингибирования роста корешков составлял более 50%, пробу считали остротоксичной.

Результаты исследований и их обсуждение Кальмиус и его балки

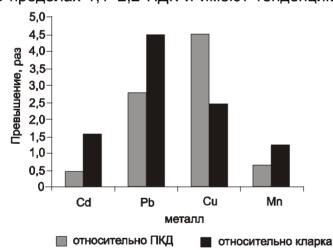
Результаты анализов проб воды р. Кальмиус приведены в табл. 2 и 3 и свидетельствуют о тенденции к уменьшению содержания тяжелых металлов от

Рис.2. Относительное содержание тяжелых металлов в воде р. Кальмиус и его балок

первой ко второй точке наблюдений, с последующим резким увеличением (для кадмия — до 2,1 ПДК) в третьей точке. Особенно чёткая тенденция увеличения загрязнения вод прослеживается р. Кальмиус ДЛЯ меди и марганца. Эту ситуацию можно объяснить более плотным металлургических размещением предприятий ближе к окраине города («ДМЗ», «Донецкгормаш», металлургические заводы «Донецксталь», «Истил»), сбросы которых качество оказывают влияние на воды реки.

Таблица 2. Результаты биотестирования и анализа вод и донных отложений р. Кальмиус и его балок на тяжелые металлы

Nº TO4-	Название точки отбора	Содержание металла, мкг/дм ³ (мг/кг для донных отложений)					
КИ		Cd Pb Cu Mn				%	
	Вода						
1	р. Кальмиус у Щегловских скважин	$\frac{0,26-1,67}{0,84}$	<0,5-47,91 17,6	14,23-40,00 30,42	32,83-194,00 94,72	7	
2	Верхне-Кальмиусское водохранилище	< 0,05 - 0,84 0,39	< 0,5 - 9,01 3,63	<0,5-26,49 10,84	3,44 – 25,16 16,85	6	
3	Нижне-Кальмиусское водо-хранилище (1)	$\frac{0,52-4,34}{2,11}$	<u>4,75 – 53,74</u> 19,61	30,59 – 143,73 78,68	21,56-46,65 35,55	18	
4	Нижне-Кальмиусское водо-хранилище (2)	$\frac{0,84 - 1,15}{0,99}$	5,06-14,85 9,82	10,85-111,03 53,96	33,33-75,34 54,04	17	
5	р. Кальмиус у Авдотьинского моста	$\frac{0,87 - 2,22}{1,37}$	3,72-67,79 30,06	16,95 – 329,76 163,66	3686–17464 9593	45	
6	Балка Игнатьевская	$\frac{0,22 - 0,54}{0,38}$	7,16-10,22 8,69	23,41-90,36 56,88	21,56-46,65 35,55	1	
7	Балка Калиновая	$\frac{0,14-0,51}{0,33}$	5,53-9,65 7,59	24,72 – 84,47 54,60	42,97-45,88 44,43	ı	
8	Балка Пограничная	$\frac{0,32-0,49}{0,41}$	5,61-248,26 126,94	16,53 – 73,28 44,91	37,62-43,59 40,61	ı	
9	Балка Безымянная в истоке	$\frac{0,59-1,82}{1,21}$	15,73 – 44,23 29,98	20,32 – 22,53 21,43	2330-5971 41,51	10	
10	Балка Безымянная при впадении в р. Кальмиус	1,54 – 1,88 1,71	7,14-12,85 10,00	$\frac{20,97 - 27,47}{24,22}$	1240-5976 3608	13	
	ПДК _{культбыт.}	1,00	30,00	1000	100,00		
	16	Донные от	гложения	Т			
5	р. Кальмиус у Авдотьинского моста	1,4	89,4	246,6	993	-	
10	Балка Безымянная при впадении в р. Кальмиус	0,1	4,8	18,2	345	32	
	ПДК в почвах	3,0	32,0	55,0	1500	-	
Ļ	Кларк	N·10 ⁻¹	20,0	100,0	800	-	


Примечание: результаты представлены в виде (min-max)/среднее

Следует отметить, что качество вод балок (рис. 2, точки 6–8), находящихся в Калининском районе города, соответствует установленным нормативам для водоемов культурно-бытового водопользования по тяжелым металлам [16] (кроме свинца в т. 8), поскольку в данном районе расположено наименьшее количество промышленных предприятий. Воды этих балок разбавляют более загрязненные речные воды в средней части рассматриваемого участка р. Кальмиус, что приводит к снижению содержания тяжелых металлов.

Таблица 3. Результаты гидрохимических анализов вод р. Кальмиус и его балок

Nº	Название точки отбора	Концентрация, мг/дм³ (мг/кг для донных отложений)				
точки	-	NH ₄ ⁺	NO ₂	NO ₃	СПАВ	н/п
1	р. Кальмиус у Щегловских скважин	0,41	0,02	10,0	0,1	0,33
2	Верхне-Кальмиусское водохранилище	0,19	0,01	1,2	0,04	0,10
3	Нижне-Кальмиусское водохранилище (1)	0,18	0,08	5,7	0,14	0,45
4	Нижне-Кальмиусское водохранилище (2)	0,23	0,02	3,4	0,20	0,40
5	р. Кальмиус у Авдотьинского моста	0,17	0,06	6,7	0,20	0,65
6	Балка Игнатьевская	0,36	0,02	1,4	0,18	0,40
7	Балка Калиновая	0,33	0,02	2,0	0,16	0,40
8	Балка Пограничная	0,35	0,02	2,2	0,21	0,50
9	Балка Безымянная в истоке	0,33	0,13	9,2	0,19	0,65
10	Балка Безымянная при впадении в р. Кальмиус	0,23	0,12	8,6	0,19	0,65
	ПДК _{культбыт.}	2,0	3,3	45,0	0,3	0,30

Результаты гидрохимического анализа вод р. Кальмиус и его балок приведены в табл. 3. Как свидетельствуют данные табл. 3, значения гидрохимических показателей в исследуемых пробах не превышают нормативно допустимых, кроме содержания нефтепродуктов во всех точках наблюдения за исключением второй. Зафиксированные превышения находятся в пределах 1,1–2,2 ПДК и имеют тенденцию к возрастанию по направлению к

Рис.3. Относительное содержание тяжелых металлов в донных отложениях р. Кальмиус

окраине города. Данная ситуация очевидно обусловлена попаданием в водные объекты неочищенного дождевого стока городских дорог и автомагистралей, подтверждением чего являются и данные работы [17].

Загрязнение донных отложений тяжёлыми металлами оценено по двум критериям: ПДК и кларковое содержание элементов в почве (рис. 3). Согласно Института методике почвоведения агрохимии им. Н. И. Соколовского, в зависимости от значения отношения валовой формы элемента

территории кларка данной содержание/кларк) для (валовое выделяют благополучную 1-2),удовлетворительную (отношение равно (2-4),катастрофическую (более предкризисную (4-5),кризисную (5–6) И экологическую ситуацию [18].

Согласно результатам выполненных исследований, наблюдается предкризисная ситуация по содержанию свинца в донных отложениях р. Кальмиус относительно кларка этого элемента в почве. Результаты гидрохимических исследований подтверждаются данными, полученными при проведении биотестирования, и показывают ухудшение качества воды р.

Кальмиус на выходе из г. Донецка, что свидетельствует о негативном влиянии производственной деятельности города на гидроэкосистему.

Пруды

Контроль вод поверхностных водоёмов города Донецка находится в ведении Донецкой городской СЭС. Однако из всего перечня тяжёлых металлов в воде определяют только содержание железа, для которого установлено достаточно высокое значение ПДК, в то время как содержание более токсичных металлов (кадмий, свинец, медь и др.) контролируется далеко не во всех объектах. Поэтому были проведены исследования по определению содержания этих металлов с целью оценки необходимости их постоянного контроля.

Результаты исследований приведены в табл. 4 и 5 (средние значения за рассмотренный период).

Таблица 4. Результаты анализа вод прудов г. Донецка на тяжелые металлы

Nº	Название точки отбора	Содержание металла, мкг/дм ³				K _i , %			
		Cd	Pb	Cu	Mn	Fe			
	Кировский район								
11	Пруд Абакумовский	0,50	17,43	84,00	25,06	144,15	12		
12	Пруд м-на Широкий	0,74	27,23	3385,90	30,07	130,14	12		
13	Пруд Бабакова – 1	1,57	13,89	182,26	30,11	151,13	0		
14	Пруд шахты «17-17 бис»	1,09	36,08	159,08	26,98	147,35	24		
15	Пруд пос. Гормаш	1,25	36,13	322,84	24,75	117,44	-		
		Куйб	ышевский ра	айон					
16	Пруд Пески	2,37	30,99	141,11	41,49	188,92	8		
17	Пруд ДЗХР	1,01	24,99	103,81	31,57	107,34	-		
18	Пруд №2	0,61	19,91	38,53	27,00	180,64	4		
19	Пруд №3	0,68	22,48	27,50	26,09	210,87	8		
		Kν	евский райс	Н					
20	Пруд Путиловский	0,24	3,83	8,97	17,53	91,45	1		
21	Пруд Ветковский	0,46	8,68	40,82	27,74	76,98	•		
Ворошиловский район									
22	Городской пруд №1	0,25	13,13	48,81	-	84,25	-		
23	Городской пруд №2	0,1	13,93	47,11	ı	92,54	1		
Ленинский район									
24	Пруд Кирша	1,54	40,40	121,42	54,40	229,83	31		
25	Донецкое море	1,21	30,79	107,66	25,67	245,80	6		
	ПДК _{культбыт.}	1,00	30,00	1000	100,00	300,00	-		

Анализ данных, представленных в табл. 4 и 5, приводит к следующим выводам:

- отмечено превышение содержания кадмия на уровне (1,09–2,37) ПДК в водоёмах Ленинского, Кировского, Куйбышевского и Калининского районов, его максимум обнаружен в воде пруда Пески;
- зафиксировано превышение содержания свинца на уровне (1,03–4,23) ПДК в водоёмах тех же районов;
- превышение содержания меди отмечено лишь в пруде микрорайона
 Широкий (Кировский район) и составило 3,86 ПДК;
 - содержание марганца не превышало нормативного значения;
- отмечена повышенная минерализация вод прудов до (1,2 3,0) ПДК, обусловленная как природными особенностями Донецкого региона [19, 20], так и сбросом высокоминерализованных шахтных вод;

– выявлено превышение нормативного содержания нефтепродуктов в воде всех исследованных прудов, достигавшее 1,8 ПДК.

Таблица 5. Результаты гидрохимического анализа вод прудов г. Донецка

Nº	Название точки отбора	Концентрация, мг/дм ³						
INE		Минера- лизация	NH ₄ ⁺	NO ₂	NO ₃	СПАВ	н/п	
	Кировский район							
11	Пруд Абакумовский	2976	0,34	0,07	6,12	0,14	0,40	
12	Пруд м-на Широкий	2236	0,52	0,16	5,86	0,15	0,40	
13	Пруд Бабакова – 1	2582	0,32	0,03	4,00	0,12	0,44	
14	Пруд шахты «17-17 бис»	2109	0,27	0,02	4,42	0,12	0,44	
15	Пруд пос. Гормаш	1927	0,32	0,03	5,00	0,13	0,46	
		Куйб	бышевский	район				
16	Пруд Пески	2631	0,63	0,03	3,66	0,12	0,50	
17	Пруд ДЗХР	1506	0,38	0,03	7,22	0,13	0,54	
18	Пруд №2	1820	0,50	0,06	5,26	0,13	0,44	
19	Пруд №3	1636	0,74	0,07	6,00	0,13	0,40	
		К	иевский раі	йон				
20	Пруд Путиловский	1257	0,17	0,06	6,96	0,10	0,32	
21	Пруд Ветковский	1924	0,22	0,06	7,00	0,10	0,38	
Ворошиловский район								
22	Городской пруд №1	1193	0,23	0,07	4,94	0,13	0,52	
23	Городской пруд №2	1205	0,25	0,08	4,94	0,14	0,54	
Ленинский район								
24	Пруд Кирша	2710	0,44	0,02	3,52	0,14	0,40	
25	Донецкое море	2490	0,20	0,46	2,50	0,17	0,45	
	ПДК _{культбыт.}	1000	2,00	3,30	45,00	0,30	0,30	

Примечание: н/п — нефтепродукты

Значения *К*_i, полученные при биотестирований вод прудов, свидетельствуют об отсутствии острой и хронической токсичности вод, кроме пруда Кирша, где была зафиксирована хроническая токсичность на уровне 31%. Сложившуюся ситуацию можно объяснить возможным нахождением токсичных металлов в связанном состоянии, что влияет на их биодоступность [21]. Следует отметить, что водоемы Донецкого региона отличаются высокой минерализацией, на что влияет высокая минерализация сбрасываемых шахтных вод. Это способствует связыванию тяжелых металлов некоторыми веществами, присутствующими в воде. Поэтому, можно предположить, что, несмотря на достаточно значительное количество тяжелых металлов в водах прудов г. Донецка, их токсичность выражена слабо ввиду указанных факторов.

Выводы

Проведенные исследования вод и донных отложений р. Кальмиус и его притоков свидетельствуют о негативном влиянии промышленной деятельности г. Донецка на качество вод реки в черте города. Это подтверждается увеличением содержания в воде всех исследуемых металлов с увеличением плотности промышленных предприятий, расположенных на водосборной площади реки. Качество вод, впадающих в р. Кальмиус балок, отвечает установленным нормативам (кроме балки Пограничная, в которой установлено превышение содержания свинца в 4 раза), что способствует снижению содержания загрязнителей в воде р. Кальмиус. Результаты биотестирования подтверждают данные гидрохимических исследований, и показывают ухудшение качества воды р. Кальмиус на выходе из г. Донецка.

Согласно результатам наших исследований, наблюдается предкризисная ситуация по содержанию свинца в донных отложениях р. Кальмиус относительно кларка этого элемента в почве. Высокое содержание тяжелых металлов в донных отложениях может являться причиной вторичного загрязнения вод в исследуемых водных объектах.

В воде прудов Ленинского, Кировского, Куйбышевского и Калининского районов наблюдалось превышение содержания кадмия и свинца на уровне (1,09–2,37) ПДК и (1,03–4,23) ПДК соответственно. Превышение концентрации меди зафиксировано лишь в пруде микрорайона Широкий на уровне 3,86 ПДК. Полученные данные говорят о необходимости мониторинга вод прудов на содержание указанных металлов.

Результаты биотестирований вод прудов позволяют сделать вывод об отсутствии острой и хронической токсичности, кроме пруда Кирша, где была зафиксирована хроническая токсичность на уровне 31%. Сложившуюся ситуацию можно объяснить возможным нахождением токсичных металлов в связанном состоянии, что влияет на их биодоступность.

Таким образом, проведенные результаты исследований вод и донных отложений поверхностных водоемов г. Донецка свидетельствуют о негативном влиянии индустриальной активности города на состояние гидроэкосистем. Сложившаяся ситуация требует принятия мер по уменьшению количества сбросов загрязненных сточных вод в водные объекты, а также постоянного мониторинга их качества.

Литература

- 1. **Земля тривоги нашої.** За матеріалами доповіді про стан навколишнього природного середовища в Донецькій області у 2006 році. / Під ред. С. В. Треьякова. Донецьк, 2007 108 с.
- 2. **Брень Н. В.** Использование беспозвоночных для мониторинга загрязнения водных экосистем тяжелыми металлами (Обзор) // Гидробиол. журн., 1999. № 5. С. 67–72.
- 3. **Брагинский Л. П., Величко И. М., Щербань Е. П.** Пресноводный планктон в токсичной среде. К.: Наукова думка, 1987. 180 с.
- 4. **Воробейчик Е. Л., Садыков О. Ф., Фарафонтов М. Г.** Экологическое нормирование техногенных загрязнений наземных экосистем (локальный уровень). Екатеринбург: Наука, 1994. 287 с.
- 5. **Никаноров А. М., Жулидов А. В.** Биомониторинг тяжелых металлов в пресноводных экосистемах. Л.: Гидрометеоиздат, 1991. 312 с.
- 6. **Биогеохимический цикл тяжёлых металлов в экосистеме Нижнего Дона.** / Под ред. П. Ф. Молодкина. Ростов-на-Дону, 1991. 112 с.
- 7. **МВИ 14-93.** Методика выполнения измерения массовой концентрации меди, марганца, железа, свинца, стронция, алюминия, цинка, молибдена в воде. Северодонецк, 1993. 22 с.
- 8. **Алемасова А. С., Рокун А. Н., Шевчук И. А.** Аналитическая атомно-абсорбционная спектроскопия. Учеб. пособие. Донецк, 2003. 327 с.
- 9. **MBB № 081/12-0010-01.** Ґрунти. Методика виконання вимірювань масової частки кадмію атомно-абсорбційним методом. К., 2002. 9 с.
- 10. **КНД 211.1.4.030-95.** Методика фотометричного визначення амоній-іонів з реактивом Неслера в стічних водах. К., 1995. 9 с.
- 11. **КНД 211.1.4.023-95.** Методика фотометричного визначення нітрит-іонів з реактивом Гріса в поверхневих та очищених стічних водах. К., 1995. 8 с.
- 12. **КНД 211.1.4.027-95.** Методика фотометричного визначення нітратів з саліциловою кислотою у поверхневих та біологічно очищених водах. К., 1995. 7 с.
- 13. **КНД 211.1.4.017-95.** Методика екстракційно-фотометричного визначення аніонних поверхнево-активних речовин з метиленовим блакитним у природних та стічних водах. К., 1995. 18 с.
 - 14. СЭВ. Унифицированные методы анализа воды. М., 1985. С. 540-549.
- 15. **Fiskesjo**, **Geirid**. Allium test for screening chemicals; evaluation of cytological parameters. // Plants for Environmental Studies, 1997. P. 308–333.

- 16. **Нормативы ПДК, утверждённые Министерством охраны здоровья** для водоёмов хозяйственно-питьевого и культурно-бытового водопользования. М., 1982. 40 с.
 - 17. Canningham W., Saigo B. Environmental science. Boston, 1995. 612 p.
- 18. **Боровская Ю. И., Зубова Л. Г.** Экологический анализ донных отложений р. Лугань / Матеріали VII Всеукраїнської наукової конференції студентів, магістрантів, аспірантів. Одеса, 2005. С. 23–24.
- 19. **Горев Л. Н., Никаноров А. М., Пелещенко В. И.** Региональная гидрохимия. К.: Вища школа, 1989. 280 с.
- 20. **Горєв Л. М., Пелещенко В. І., Хільчевський В. К.** Гідрохімія України: Підручник. К.: Вища школа, 1995. 307 с.
- 21. **Gumgum B., Ozturk G.** Chemical speciation of heavy metals in the Tigris River sediment. // Chemical speciation and bioavailability, 2001. № 13. P. 25–28.

Ó Фомина Е.С., Трошина Е.А., 2008

УДК 66.049.2

Крутько І. Г., Пульникова Ю. В. (ДонНТУ)

ЗАПОБІГАННЯ УТВОРЕННЯ КАРБОНАТНИХ ВІДКЛАДЕНЬ В ТЕПЛООБМІННІЙ АПАРАТУРІ

Досліджено вплив коефіцієнту упарювання та кількості надсмольної води на зниження накипоутворення. Виведені оптимальні умови стабілізаційної обробки технічної та зворотної води надсмольною водою.

Запобігання накипоутворення в теплообмінній апаратурі — дуже актуальна задача для технологічних процесів коксохімічного виробництва.

Використання технічної (природної) води у якості охолоджуючого агенту в теплообмінній апаратурі супроводжується утворенням низькотемпературного накипу, оскільки теплопровідність кальцієвих відкладень на порядок менше теплопровідності металу, теплообмін погіршується.

При порушенні теплообміну ускладнюються умови охолодження коксового газу в первинних газових холодильниках (ПГХ), що призводить до втрат хімічних продуктів та великої витрати електроенергії для його перекачування. Розрахунки показують, що збільшення товщини шару накипу від 0,2 до 2 см приводить до зниження теплопередачі на 20%, а відповідно й до підвищення температури охолоджуючого коксового газу (на 10–13°С). А як відомо з літературних даних, підвищення температури коксового газу на 1–2°С знижує на 5–6% вихід хімічних продуктів коксування [1].

Природні води, що використовуються у якості охолоджуючого агенту, містять Ca^{2+} , HCO_3^{-} , CO_3^{2-} , CO_2 . Для охолодження коксового газу в ПГХ використовують воду з наступними характеристиками:

-	рН	6,5–8,7
-	Загальна жорсткість, мг-екв/л	6,4-9,0
-	Кальцієва жорсткість, мг-екв/л	3,6–6,2
-	Магнієва жорсткість, мг-екв/л	2,4-4,0
-	Лужність, мг-екв/л	4,2-6,0
-	Вміст СІ⁻, мг/л	64–92
-	Вміст SO4 ²⁻ , мг/л	164–394