7. **Кучер Р.В., Зайцев Ю.С., Анисимова Л.Н.** Механизм реакций инициирования при сополимеризации виниловых мономеров // Исследования в области синтеза полимеров. Сб. научн. тр. — Київ: Наукова думка, 1978. — С. 3–9.

Ó Зайцева В.В., Тюрина Т.Г., 2008

УДК 547.56:547.233:541.127/128

Лящук С. Н., Дорошенко Т. Ф. (ИНФОУ НАНУ)

ИССЛЕДОВАНИЕ РЕАКЦИЙ ОКИСЛЕНИЯ НЕКОТОРЫХ 3-(N-МОРФОЛИНО)-3-R-ТИЕТАН-1,1-ДИОКСИДОВ И ТЕРМОЛИЗА ОБРАЗУЮЩИХСЯ ПРОДУКТОВ

Окисление 3-(N-морфолино)-3-R-тиетан-1,1-диоксидов перекисью водорода в смеси уксусная кислота—уксусный ангидрид приводит к образованию соответствующих N-оксидов, которые при температуре 70-90 °C подвергаются элиминированию по Коупу с образованием 3-замещенных тиет-1,1-диоксидов. Полуэмпирическим методом АМ1 рассчитаны параметры переходных состояний, промежуточных продуктов, участки поверхностей потенциальной энергии реакции элиминирования и показано, что этот процесс является стадийным. Увеличение объема заместителя R способствует протеканию термолиза.

Введение

Реакции циклоприсоединения сульфенов (S,S-диоксидов тиокарбонильных соединений) являются одними из наиболее характерных для этих весьма реакционноспособных соединений и лежат в основе получения многих серосодержащих гетероциклов [1, 2]. Являясь электрофилами средней силы, сульфены реагируют преимущественно с электронообогащенными двойными связями и сопряженными системами (енаминами, виниловыми эфирами и др.), причем выходы в этих реакциях сильно зависят от донорной способности заместителя у ненасыщенной связи реагента. Дальнейшие реакции, в частности, окисления и восстановления, образующихся циклических аддуктов до сих пор остаются малоизученными.

Цель работы заключалась в изучении реакций окисления перекисью уксусная кислота – уксусный водорода смеси ангидрид некоторых представителей аддуктов — продуктов [2+2]-циклоприсоединения таких сульфенов к енаминам — 3-замещенных тиетан-1,1-диоксидов, термолиза образующихся продуктов — соответствующих N-оксидов, квантово-химическом параметров переходных состояний и участков потенциальной энергии (ППЭ) этого процесса вдоль координаты реакции.

Результаты и обсуждение

В рамках изучения реакционной способности продуктов циклоприсоединения сульфенов к енаминам (3-замещенных тиетан-1,1-диоксидов), а также поиска направлений их применения в области препаративного синтеза изучен ряд реакций окисления некоторых типичных представителей этих соединений — 3-(N-морфолино)-3-R-тиетан-1,1-диоксидов (соединения I-IV), полученных с

удовлетворительными выходами реакцией соответствующих енаминов с аддуктом сульфен-триэтиламин согласно схеме (1).

Обнаружено, что первоначально образующиеся в результате этой реакции соответствующие N-оксиды V-VIII являются термически нестабильными и при нагревании разлагаются в температурном диапазоне 70–90°C с выделением морфолин-4-ола и 3-замещенных тиет-1,1-диоксидов IX-XII (схема (2)).

где R = Me (I, V); t-Bu (II, VI); Ph (III, VII); p-Cl-Ph (IV, VIII).

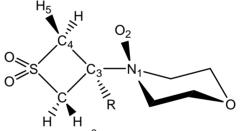
По-видимому, стереохимическая ситуация, возникающая в структуре образующихся N-оксидов такова. что появляется возможность реализации в случае этих соединений внутримолекулярного элиминирования по Коупу [3,4]. Известно, что такое элиминирование является одним из наиболее эффективных методов получения гидроксиламинов, суть которого состоит в выделении летучего олефина из оксида амина при нагревании. В результате образуется необходимый гидроксиламин. Обязательным условием реализации этой реакции (схема (3)) является наличие в системе и стерическая доступность атома водорода у β-углеродного атома алкильного заместителя относительно атома азота.

В литературе имеется ряд примеров, когда термический распад аминоксидов (элиминирование по Коупу) происходит достаточно легко [4,5].

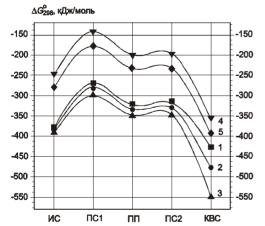
$$R_{1} \xrightarrow{\Theta} O \xrightarrow{H} \xrightarrow{\Delta} R_{1}R_{2}NOH + CH_{2}=CH_{2}$$

$$R_{2} \xrightarrow{H_{2}C} CH_{2}$$

$$(3)$$


По характеру протекания процесс сходен с другими реакциями элиминирования. Распад подчиняется закономерностям механизма Е1, при этом предполагается наличие плоского циклического пятичленного переходного состояния.

Однако известны также примеры, когда конформационные ограничения препятствуют успешному и стереоспецифичному протеканию такого синэлиминирования [3, 4]. Тем не менее, как правило, условия реакции являются достаточно мягкими, а выходы продуктов — высокими. При увеличении полярности среды часто реакция может протекать уже при комнатной температуре. В тех случаях, когда молекула (например, N-оксиды бензиламинов) не содержит атомов водорода при β-углеродном атоме реализуется перегруппировка Мейзенгеймера [6], происходящая путем [1, 2]-сдвига.


Примеров протекания реакции расщепления по Коупу в случае соединений, в которых атом азота в N-оксиде связан с гетероциклическим фрагментом известно мало, так как в этом случае часто имеются существенные стерические препятствия протеканию такой реакции. Нами показано, что, несмотря на наличие определенных стерических затруднений (четырехчленное тиетановое кольцо является довольно «жестким» структурным фрагментом), термолиз синтезированных в настоящей работе N-оксидов V-VIII протекает в температурном диапазоне 70–90°С достаточно легко и в результате с хорошими выходами образуются соответствующие 3-R-тиет-1,1-диоксиды (IX-XII) — весьма интересные в синтетическом плане соединения, дальнейшие реакции которых находят применение в области молекулярного дизайна серосодержащих гетероциклов.

С целью установления особенностей механизма протекания элиминирования по Коупу в исследуемой системе нами проведено изучение протекания этого процесса квантово-химическим методом АМ1 в приближении ограниченного метода Хартри-Фока. С оптимизацией по всем независимым переменным были рассчитаны участки ППЭ, соответствующие возможным

каналам протекания реакции, проведена полная оптимизация геометрии исходных молекул, переходных состояний (ПС), промежуточных и конечных продуктов реакции, а также определены ее термодинамические параметры. В расчетах использовали следующую нумерацию атомов в молекулярной системе:

На рис. 1 представлено изменение энергии Гиббса ΔG^0_{298} в ходе реакции. Видно, что на пути от исходного равновесного состояния (ИС) к продукту реакции (комплексу с водородной связью (КВС) морфолин-4-ола с 3-замещенным тиет-1,1-диоксидом) существуют два переходных состояния

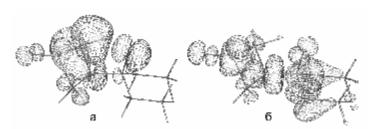
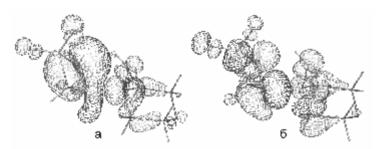


Рис.1. Рассчитанное изменение свободной энергии Гиббса в ходе реакции элиминирования исследованных N-оксидов с различными заместителями (R = H (1); Me (2); t-Bu (3); Ph (4); p-Cl-Ph (5)


(ПС1 и ПС2), а также промежуточный продукт (ПП).

На рис. 2 и 3 показаны структуры рассчитанных ПС1 и ПС2 при R = H, а также соответствующие граничные молекулярные орбитали — верхние занятые (B3MO) и нижние вакантные (HBMO).

В табл. 1 и 2 приведены рассчитанные геометрические параметры и некоторые характеристики ПС1 и ПС2 исследуемой реакции при варьировании заместителя R (R = H, Me, t-Bu, Ph, p-Cl-Ph), а также значения мнимых частот v^{\neq} , соответствующих модам

Рис.2. Структура ПС1 и граничные орбитали (а — B3MO; б — HBMO) при R = H

Рис.3. Структура ПС2 и граничные орбитали (а — B3MO; б — HBMO) при R = H

реакции. данной координат Исходя полученных ИЗ значений v[≠], можно сделать вывод, что кривизна ППЭ в существенно районе ПС2 меньше, чем в случае ПС1. В то же время изменение природы заместителя R для каждого ПС мало влиет на форму ППЭ районе соответствующих седловых точек.

Результаты, приведенные в таблице 2, свидетельствуют, что доля энтропийной составляющей свободной энергии обоих ПС для R =H, Me, t-Bu мала и несколько увеличивается при переходе к R = Ph, p-Cl-Ph в основном за счет снижения абсолютных значений энтальпии.

На основании проведенных расчетов можно сделать вывод о стадийном механизме происходящего элиминирования. На первой стадии — превращение молекулы из ИС в ПП через переходное состояние ПС1 происходит перенос водородного атома от α-углеродного атома на кислородный атом N-оксида.

Таблица 1. Некоторые геометрические параметры переходных состояний

R	ПС	$r(O_2H_5)$	$r(N_1C_3)$	$r(C_3C_4)$	$\angle N_1O_2H_5$	$\angle N_1C_3C_4H_5$	$\angle N_1O_2H_5C_4$	$\angle O_2N_1C_3C_4$
Н	ПС1	1,305	1,560	1,510	101,39	8,4	0,1	10,4
	ПС2	0,985	1,828	1,409	106,97	32,4	5,7	58,2
Me	ПС1	1,302	1,578	1,519	101,39	10,8	6,5	16,7
	ПС2	0,985	1,796	1,427	107,60	34,2	14,4	65,4
t-Bu	ПС1	1,311	1,592	1,526	101,21	11,6	13,5	21,1
	ПС2	0,987	1,783	1,441	108,24	19,4	17,6	36,2
Ph	ПС1	1,308	1,593	1,519	101,73	8,1	3,9	11,9
	ПС2	0,986	1,780	1,432	107,73	31,6	13,7	58,7
p-Cl-Ph	ПС1	1,309	1,593	1,519	101,78	8,0	3,6	11,7
	ПС2	0,986	1,782	1,431	107,75	31,7	14,1	59,0

Примечание. Длины связей приведены в ангстремах, углы — в градусах.

Таблица 2. Рассчитанные характеристики переходных состояний

R	ПС	ΔH^{\dagger}_{298} ,	S [≠] ₂₉₈ ,	$E_{\rm B3MO}$,	E_{HBMO} ,	v [≠] I,	$q(C_3)$,	q(C ₄),
IX.	110	кДж/моль	Дж/(К∙моль)	эВ	эВ	CM ⁻¹	a.e.	a.e.
Н	ПС1	-152,05	395,17	-9,740	-0,032	1522	0,012	-1,221
	ПС2	-192,58	414,60	-9,355	-0,102	406	0,164	-1,229
Me	ПС1	-156,95	415,52	-9,631	-0,036	1503	0,070	-1,219
	ПС2	-201,98	431,60	-9,127	-0,175	369	0,216	-1,286
t-Bu	ПС1	-162,30	463,10	-9,558	-0,016	1506	0,093	-1,212
	ПС2	-203,64	480,44	-9,101	-0,230	302	0,226	-1,319
Ph	ПС1	-9,13	448,75	-9,528	-0,513	1494	0,115	-1,203
	ПС2	-59,79	464,01	-9,023	-0,712	317	0,248	-1,289
p-Cl-Ph	ПС1	-36,56	473,02	-9,595	-0,782	1495	0,113	-1,202
	ПС2	-87.54	488.33	-9.118	-0.946	320	0.247	-1.286

Эта стадия, судя по энергетическому профилю реакции,представленному на рис. 1, является скорость лимитирующей. Образующийся ПП весьма неустойчив и легко распадается через ПС2. Конечным продуктом такого распада является КВС.

Водородная связь в КВС образуется между водородным атомом гидроксильной группы морфолин-4-ола и кислородным атомом сульфогруппы соответствующего тиет-1,1-диоксида.в процессе превращения ПС2 в КВС:

Особенностью ПС1 для всех рассмотренных R является то, что оно не является строго плоским. Причиной этого, очевидно, служат имеющиеся стерические препятствия точной ориентации атомов. Так в ряду R = H, Me, t-Bu, как следует из значений двугранных углов, приведенных в табл. 1, отклонение ПС1 ОТ плоскости заметно возрастает соответствующих двугранных углов достигают 11-13 градусов. Заметим, что предположение о нарушение компланарности ПС в некоторых реакциях элиминирования по Коупу выдвигалось и раньше при анализе результатов изучения кинетического изотопного эффекта [7, 8]. Вторая черта, характерная как для ПС1, так и ПС2 — высокий отрицательный заряд на атоме углерода С4 четырехчленного цикла и значительный двоесвязанный характер С=С связи. Таким образом, в ПС1 и ПС2 существует сильное разделение эффективных зарядов, что должно способствовать протеканию реакции в средах с высокой полярностью. Действительно, это предположение согласуется с имеющимися экспериментальными результатами [3-5].

Анализ энергетического профиля реакции свидетельствует, что энергии активации прямой и обратной реакций ИС \rightarrow ПС1 и ПП \rightarrow ПС1 заметно зависят от природы заместителя R — уменьшаются с увеличением стерического объема на 16,6 и 6,8 кДж/моль. Аналогичная ситуация наблюдается и для процесса ПП \rightarrow ПС2 — с 8 до 1 кДж/моль. Сильное влияние объема заместителя наблюдается для стадии ПС2 \rightarrow КВС. Так, в ряду R = H, Me, t-Bu изменение энергии Гиббса $\Delta G_{298}^{\rm o}$ составляет, соответственно, -111,4; -147,1 и -203,6 кДж/моль. При R = Ph, p-Cl-Ph (также весьма объемных заместителей) оно составляет, соответственно, -159,3 и -158,8 кДж/моль.

В целом, с точки зрения термодинамики, процесс элиминирования по Коупу является энергетически выгодным — реакция является экзотермической. При этом с увеличением объема заместителя R тепловой эффект реакции, рассчитанный по разности $\Delta G_{298}^{\rm o}$ для КВС и ИС, возрастает почти в 3 раза и достигает 158,2 кДж/моль при R = t-Bu.

Учитывая отмеченные факты, можно заключить, что увеличение стерического объема R способствует протеканию реакции расщепления по Коупу. В то же время, очевидно, существует также определенный предел, после которого дальнейшее увеличение объема R будет приводить к существенному ограничению возможности необходимой для протекания реакции взаимной ориентации связей N_1 - O_2 и C_3 - H_4 при уменьшении двугранного угла $\angle O_2 N_1 C_3 C_4$ на стадии образования ПС1.

Экспериментальная часть

Использованные в работе растворители марки «ч» очищали по известным методикам [9, 10], соединения марки «хч» и «чда» использовали без дополнительной очистки. Элементный анализ синтезированных соединений проводили по методикам [11]. ИК-спектры записывали на приборе «Perkin Elmer-180». Спектры ПМР продуктов сняты на приборе «Gemini-200» фирмы Varian (США) с добавкой тетраметилсилана в качестве внутреннего стандарта.

Квантово-химические расчеты проводили в рамках полуэмпирического метода АМ1 [12] по программе WinMOPAC [13]. Седловые точки на ППЭ, которые соответствуют ПС реакции, определяли с использованием метода стационарных точках ППЭ проводили гармонический колебательный анализ. ПС идентифицировали по наличию единственной колебаний. соответствующей мнимой частоты координате Правильность идентификации переходных состояний была подтверждена расчетами с использованием метода внутренней координаты реакции [14] — во всех случаях установлено, что найденные переходные состояния находятся на пути реакции с минимальной энергией.

Исходные енамины 1-(N-морфолино)-1-R-этилены (R = Me, t-Bu, Ph, p-Cl-Ph) получали по известным методикам [15–17].

3-(N-морфолино)-3-R-тиетан-1.1-диоксиды получали методике: раствор соответствующего 1-(N-морфолино)-1-R-этилена (0,1 моль) и триэтиламина (0,2 моль) в 60 мл диэтилового эфира охлаждали до 0° С в трехгорлой колбе объемом150 мл. Затем к раствору медленно в течение 30 минут прибавляли по каплям при перемешивании метансульфохлорид (0,1 моль), после чего перемешивание продолжали в течение 8 часов при температуре. По окончании процесса реакционная отфильтровывалась и остаток дважды промывался эфиром. Объединенный фильтрат упаривали при пониженном давлении, в результате получали твердый остаток. Его промывали холодной водой для удаления гидрохлорида триэтиламина. затем растворяли в разбавленной соляной кислоте и нерастворимую часть отбрасывали. Нейтрализация раствора приводит к целевых продуктов. После перекристаллизации бензол: rekcah (1:2) (при R = Me, t-Bu) или этанола (при R = Ph, p-Cl-Ph) получали белые кристаллы. Соединение I: Выход 44%. $T_{\rm пл.}$ 47–48°C. ИК спектр (KBr), v, см⁻¹: 1305 (SO₂); 1205 (C-N); 1140 (SO₂); 1090 (O-C); 1040 (C-N). ¹H ЯМР спектр (ТМС, CDCI₃), б, м.д.: 1,18 (с, 3H); 2,27 (м, 4H); 3,63 (м, 4H); 4,19 (с, 4H). Найдено, %: С 47,02; Н 7,48; N 6,71; S 15,75. С₁₁Н₂₁NO₃S. Вычислено, %: С 46,81; H 7,37; N 6,82; S 15,62. Соединение II: Выход 36 %. $T_{пл.}$ 82–84°C. ИК спектр (KBr), v, см⁻¹: 1300 (SO₂): 1215 (C-N): 1135 (SO₂): 1080 (O-C): 1035 (C-N). ¹Н ЯМР спектр (ТМС, CDCl₃), δ, м.д.: 1,09 (с, 9H); 2,24 (м, 4H); 3,66 (м, 4H); 4,30 (м, 4H). Найдено, %: С 53,22; Н 8,65; N 5,60; S 13,16. С₁₁H₂₁NO₃S. Вычислено, %: С 53,41; Н 8,56; N 5,66; S 12,96. Соединение III: Выход 62 %. T_{nn} 192–193°С. ИК спектр (KBr), v, см⁻¹: 1320 (SO₂); 1225 (C-N); 1120 (SO₂); 1070 (O-C); 1025 (С-N). ¹H ЯМР спектр (ТМС, CDCl₃), δ, м.д.: 2,26 (м, 4H); 3,68 (м, 4H); 4,42 (с, 4H); 7,2-7,4 (м, 5H). Найдено, %: С 58,57; Н 6,35; N 5,10; S 12,15. C₁₃H₁₇NO₃S. Вычислено, %: С 58,40, Н 6,41, N 5,24, S 11,99. Соединение IV: Выход 68%. Т_{пп} 218–220°C. ИК спектр (KBr), v, см⁻¹: 1320 (SO₂), 1220 (C-N), 1125 (SO₂), 1095 (C-CI), 1070 (O-C), 1025 (C-N). ¹H ЯМР спектр (TMC, CDCl₃), δ, м.д.: 2,29 (м, 4H), 3,72 (м,4Н), 4,46 (с, 4Н), 7,12 (д, 2Н_{аг}), 7,39 (д, 2Н_{аг}). Найдено, %: С 51,51; Н 5,45; CI 11,85; N 4,52; S 10,75. С₁₃H₁₆CINO₃S. Вычислено, %: С 51,74, Н 5,34, CI 11,75, N 4,64, S 10,62.

3-(N-морфолино)-3-R-тиетан-1.1-диоксидов Реакцию окисления получением соответствующих N-оксидов проводили по следующей методике: к раствору 3-(N-морфолино)-3-R-тиетан-1,1-диоксида (0,04 моль) в 30 мл ледяной уксусной кислоты и 30 мл уксусного ангидрида, охлажденному до 5°C, прибавляли по каплям при перемешивании 10 г раствора 30% перекиси водорода. Реакционную смесь перемешивали в течение 8 часов при 5°C и осторожно нейтрализовывали концентрированным раствором гидроксида натрия. не допуская повышения температуры. Продукт экстрагировали из раствора хлористым метиленом (2 порции по 50 мл), затем растворитель упаривали при пониженном давлении и комнатной температуре. Полученный остаток промывали охлажденным гексаном и сушили в эксикаторе. Все полученные N-оксиды не имеют четкой температуры плавления и разлагаются в температурном диапазоне 70–90°С. Соединение V: Выход 35 %. $T_{\text{разл.}} \ge 90$ °С. ИК спектр (KBr), v. см⁻¹: 1310 (SO₂): 1135 (SO₂): 1085 (O-C): 950 (N-O). ¹H ЯМР спектр (TMC, CDCl₃), δ, м.д.: 1,22 (с, 3H); 2,32 (м, 4H); 3,66 (м, 4H); 4,35 (м, 4H). Найдено, %: С 43,56; Н 6,72; N 6,27; S 14,53. С₈H₁₅NO₄S. Вычислено, %: С 43,42; H 6,83; N 6,33 ; S 14,49. Соединение VI: Выход 47 %. $T_{\text{разл.}}$ ≥ 70°C. ИК спектр (KBr), v, см⁻¹: 1305 (SO₂); 1135 (SO₂); 1080 (O-C); 940 (N-O). 1 ЯМР спектр (ТМС, CDCl₃), б, м.д.: 1,11 (с, 9H); 2,28 (м, 4H); 3,68 (м,4H); 4,43 (м, 4H). Найдено, %: С 50,08; Н 8,14; N 5,28; S 12,09. С₁₁H₂₁NO₄S. Вычислено, %: С 50,17; Н 8,04; N 5,32; S 12,18. Соединение VII: Выход 54 %. $T_{\text{разл.}}$ ≥ 75°C. ИК спектр (KBr), v, см⁻¹: 1320 (SO₂); 1120 (SO₂); 1070 (O-C); 925 (N-O). ¹H ЯМР спектр (ТМС, CDCl₃), б, м.д.: 2,29 (м, 4H); 3,69 (м, 4H); 4,53 (м, 4H); 7,2-7,4 (м, 5H). Найдено, %: С 55,02; H 5,94; N 5,08; S 11,41. С₁₃H₁₇NO₄S. Вычислено, %: С 55,11; H 6,05; N 4,94; S 11,32. Соединение VIII: Выход 51 %. Т_{разл.} ≥ 75°С. ИК спектр (KBr), v, см⁻¹: 1320 (SO₂); 1120 (SO₂); 1070 (O-C); 920 (N-O). ¹H ЯМР спектр (ТМС, CDCl₃), δ , м.д.: 2,32 (м, 4H); 3,74 (м, 4H); 4,58 (м, 4H); 7,16 (д, 2H_{ar}); 7,42 (д, 2H_{ar}). Найдено, %: С 49,24; Н 5,02; СІ 11,14; N 4,55; S 9,94. С₁₃H₁₆NO₄S. Вычислено, %: С 49,13; H 5,07; Cl 11,16; N 4,41; S 10,09.

Термолиз синтезированных N-окисей проводили путем нагрева навесок в защищенных от влаги условиях при 70-90°C в течение 3 часов. Полученный остаток промывали 5%-ной соляной кислотой для удаления морфолин-4-ола, затем водой, отфильтровывали и перекристаллизовывали: соединения ІХ, Х из гексана, соединения XI, XII — из этанола. Получали белые кристаллы соответствующих 3-R-тиет-1,1-диоксидов. Соединение ІХ: Выход 65 %. $T_{\text{кип}}$ 54–57°C (30 мм.рт.ст.). ИК спектр (пленка), ν , см⁻¹: 1585 (C=C); 1310 (SO₂); 1140 (SO₂). ¹Н ЯМР спектр (ТМС, CDCl₃), δ , м.д.: 1,95 (с, 3H); 4,24 (с, 2H); 6,32 (c, 1H). Найдено, %: С 40,44; H 5,21; S 27,22. С₄H₆O₂S. Вычислено, %: С 40,66; H 5,12; S 27,14. Соединение X: Выход 77 %. T_{nn} 64–65°C. ИК спектр (KBr), v, см⁻¹: 1590 (C=C); 1305 (SO₂); 1145 (SO₂). ¹H ЯМР спектр (TMC, CDCl₃), δ, м.д.: 1,21 (с, 9H); 4,27 (c, 2H); 6,29 (c, 1H). Найдено, %: С 52,65; Н 7,34; S 20,10. C₇H₁₂O₂S. Вычислено, %: С 52,47; Н 7,55; S 20,01. Соединение XI: Выход 92 %. Т_{пл.} 144-146 °C. ИК спектр (KBr), v, см⁻¹: 1560 (C=C); 1315 (SO₂); 1125 (SO₂). ¹H ЯМР спектр (TMC, CDCl₃), б, м.д.: 4,46 (с, 2H); 6,92 (с, 1H); 7,4-7,5 (м, 5H). Найдено, %: С 59,87; Н 4,55; S 17,71. С₉H₈O₂S. Вычислено, %: С 59,98; Н 4,47; S 17,79. Соединение XII: Выход 86 %. $T_{пл.}$ 193–194°С. ИК спектр (KBr), v, см⁻¹: 1555 (C=C); 1310 (SO₂); 1130 (SO₂); 1095 (C-Cl). ¹H ЯМР спектр (ТМС, CDCl₃), δ, м.д.: 4,54 (с, 2H); 7,08 (с, 1H); 7,28 (д, 2H_{ar}); 7,47 (д, 2H_{ar}). Найдено, %: С 50,47; H 3,35; Cl 16,41; S 14,83. С₉H₇ClO₂S. Вычислено, %: С 50,35; Н 3,29; Cl 16,52; S 14,94.

Литература

- 1. **King J.F.** The return of sulfenes // Acc. Chem. Res., 1975. V. 8. № 1. P. 10–17.
- 2. **Дуус Ф.** Тиокарбонильные соединения // Общая органическая химия: В 12 т. / Ред. Д.Бартона и У.Д.Оллиса: пер. с англ. М.: Химия, 1983. Т. 5: Соединения фосфора и серы. С. 615–621.
- 3. **Cope A.C., LeBel N.A.** Amine oxides. VII. The thermal decomposition of the N-oxides of N-methylazacycloalkanes // J. Amer. Chem. Soc., 1960. V. 82. № 17. P. 4656–4662.
- 4. **Zavada J., Pankova M., Svoboda M.** Stereochemical studies. LXXIV. The alkyl structure reactivity relationship in Cope elimination of alkyldimethylamine oxides // Collect. Czech. Chem. Communs., 1973. V. 38. № 7. P. 2102–2120.
- 5. **Bach R.D., Andrzejewski D., Dusold L.R.** The mechanism of the Cope elimination // J. Org. Chem., 1973. V. 38. № 9. P. 1742–1743.
- 6. **Johnstone R.A.W.** Mechanisms of Molecular Migrations. New York: Interscience, 1969. V. 2. P. 248–253.
- 7. **Kwart H., George T.J., Louw R., Ultes W.** Transition state structures in sulfoxide and amine oxide thermolysis // J. Amer. Chem. Soc., 1978. V. 100. № 12. P. 3927–3928.
- 8. **Yoon S.S.**, **Oei Y.**, **Sweet E.**, **Schultz P.G.** An antibody-catalysed [2,3]-elimination reaction // J. Amer. Chem. Soc., 1996. V. 118. № 46. P. 11686–11687.
 - 9. **Гордон А., Форд Р.** Спутник химика. М.: Мир, 1976. 542 с.
- 10. **Вайсбергер А., Проскауэр Э., Риддик Дж., Тупс Э.** Органические растворители. М.: ИЛ. 1958. 520 с.
- 11. **Климова В.А.** Основные микрометоды анализа органических соединений. М.: Химия. 1967. 207 с.
- 12. **Dewar M.J.S., Zoebisch E.G., Healy E.F., Stewart J.J.P.** Development and use of quantum mechanical molecular models. 76. AM1: a new gene-ral purpose quantum mechanical molecular model // J. Amer. Chem. Soc., 1985. Vol. 107. № 13. P. 3902–3909.
- 13. **WinMOPAC. Release 2.0** / Fujitsu Ltd., Computer Chemistry System Dept., 1-9-3 Nakase, Mihamaku, Chibashi, Chiba 261-8588, Japan.
- 14. **Schmidt M.W., Gordon M.S., Dupuis M.** The intrinsic reaction coordinate and the rotational barrier in silaethylene // J. Amer. Chem.Soc., 1985. V. 107. № 9. P. 2585–2589.
- 15. **Stork G., Brizzolara A., Landesman H., Szmuszkowics J., Terrell R.** The enamine alkylation and acylation of carbonyl compounds // J. Amer. Chem. Soc., 1963. V. 85. № 2. P. 207–222.
- 16. **Taguchi K., Westheimer F.H.** Catalysis by molecular sieves in the preparation of ketimines and enamines // J. Org. Chem., 1971. V. 36. № 11. P. 1570–1572.
- 17. **White W.A., Weingarten H.** A versatile new enamine synthesis // J. Org. Chem., 1967. № 1. V. 32. P. 213–214.

Ó Лящук С. Н., Дорошенко Т. Ф., 2008

УДК 547.772+547.833'772

Зинченко С. Ю., Гресько С. В., Суйков С. Ю. (ИнФОУ НАНУ), **Булавин А. В.** (ДонНТУ), **Богза С. Л.** (ИнФОУ НАНУ)

ЦИКЛИЗАЦИИ N-ГЕТАРИЛ-5-АМИНОПИРАЗОЛОВ В РЕАКЦИЯХ АЗОСОЧЕТАНИЯ И ПИКТЕ-ШПЕНГЛЕРА

Исследованы циклизации N-гетарил-5-аминопиразолов в условиях реакции азосочетания и модифицированной реакции Пикте-Шпенглера. Получены гетарилзамещенные пиразоло[3,4-с]изохинолины и пиразоло[3,4-с]циннолины.

Производные изохинолина и β-карболина более столетия остаются популярными объектами исследования для различных областей химии и медицины. Подавляющее большинство изохинолинов, индоло[2,3-c]-