NETWORK PROCESSORS DEVELOPMENT CHALLENGE

L.V. Nezamova, D.V. Belkov Donetsk national technical university

В статті виконаний огляд мережних процесорів. Проаналізовані вимоги, що пред'являються до розробок і моделей мережних процесорів.

The convergence of public voice and data networks is speeding up the pace of change in the communications industry. This is leading to increased time-to-market pressure and shorter product lifecycles. Although IP is emerging as the dominant protocol, newly defined IP capabilities, such as Quality of Service (QoS) and Multiprotocol Label Switching (MPLS), require vendors to continually support new applications. As a result, networking products require the same programmability and flexibility that was available in the early CPU-based architectures in order to quickly adapt to emerging standards.

The aim of this paper is to provide a survey of network processors (NPs), which are a new type of special microprocessors intended for networking equipment, mainly switches and routers.

Network processors (NPs) are chips-programmable devices that can process network packets (up to hundreds of millions of them per second), at wire-speeds of multi-Gbps. Their ability to perform complex and fl exible processing on each packet, as well as the fact that they can be programmed and reprogrammed as required, make them a perfect and easy solution for network systems vendors developing packet processing equipment. Network processors are about a decade old now and they have become a fundamental and critical component in many high-end network systems and demanding network processing environments.

Network Processors, emerging on the market today, deliver hardwarelevel performance to software programmable systems. It allows systems designers to focus on higher-level services and ensures longer product lifecycles [1-3].

A network processor is an application-specific instruction processor (ASIP) for the networking application domain with architectural features and/or special circuitry for packet processing at wire speed. The network processor differs from traditional microprocessors in three ways: 1) the instruction set of many network processors is based on existing RISC processor instruction sets; 2) the network processor's instruction set contain special instructions intended for, e.g., bit manipulation, CRC calculation, and search and lookup operations; 3) special hardware function blocks are present to accelerate specific packet processing tasks. In the table 1, we describe the general requirements of network processor [4].

Table 1

The general requirements of network processor			
Performance	By executing key computational kernels in		
	hardware, NPs are able to perform many		
	applications at wire speed		
Flexibility and	Having software as a major part of the		
programmability	system allows network equipment to easily		
	adapt to changing standards and		
	applications		
Fast time to market (TTM)	Time to market has become a critical factor		
	in achieving success with network		
	equipment, it is the time required for		
	system vendor		
Serviceability	Users are demanding services such as real-		
	time video, secure private networks and		
	voice over IP, these will require lot of		
	serviceability at the access and edge		
	network elements.		

The general requirements of network processor

Typical functions performed by network processors are presented in table 2.

Table 2

Typical functions performed by network processors

i jpieur iunerio	ns performed by network processors	
Lookup and pattern matching	This function compares packet header	
	fields with specific patterns to classify the	
	type of packets	
Forwarding	This function is defined as determining the	
	output path for incoming packets.	
Access control and queue	Once packets have been identified and	
management	placed in appropriated queues.	
Traffic shaping and control	Some protocols or applications require that,	
	as traffic is released to the outgoing wire or	
	fiber.	
Data Manipulation	This is where the packet is modified in	
	some way, this could be decrementing the	
	Time To Live (TTL) field in a IP packet.	

The abstract model of network processor is depicted in Figure 1. Each network processor is combination of many different elements, that are described in the table 3.

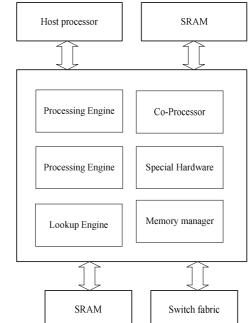


Figure 1. The abstract model of network processor

Table 3

The implementation requirements of network processor

i	on requirements of network processor		
The processing engine	Many network processors are multi-		
	processors, meaning that they are not built		
	as one big RISC processor.		
Exploiting parallelism	All network processors are using parallel		
	techniques and pipelining.		
NP memory architecture	A critical resource in NPs is the memory		
	architecture. There are three types of		
	memories in NPs including: instruction		
	memory, packet memory, and route table		
	memory.		
Dedicated hardware	All network processors incorporate special		
	hardware and integrated co-processors to		
	perform common networking tasks.		
Network interface	The most important feature next to a		
	network processor is the network interface.		
Software support	Thus far, the considerations were all related		
	to the hardware of the network processor,		
	but of equal importance is software		
	support.		

In table 4 we present common approaches in designing NPs.

Table 4

	approaches in designing NPS		
ASIC (application specific	Any hardwired solution including a		
integrated circuit)	microchip that has been designed from		
	scratch for a specific application.		
ASIP (application specific	An instruction set processor specialized for		
instruction processor)	a particular application domain.		
Co-processor	A hardwired, possibly configurable		
	solution with a limited programming		
	interface.		
FPGA (field programmable	A device that can be reprogrammed at the		
gate array)	gate level.		
GPP (general purpose	A programmable processor for general		
processor)	purpose computing.		
Traditional RISC-based	The RISC architectures are the basic		
approach architectures	infrastructures of many existing NPs.		
Special processor	Some NPs use special processor		
architectures	architecture techniques, such as modified		
	co-processor and special functional units to		
	improve their performance.		
Massively parallel	Some NPs utilize multiple PEs to exploit		
architectures with modern	Parallelism		
RISC approach			

The common approaches in designing NPs

The information provided in tables 5 describe that all NPs have some kind of special hardware to execute common time-consuming tasks faster and executes special instructions to speed up network processing functions.

Table 5

NP	Special Hardware	Special	Layering
		Instructions	Support
Agere Payload-	FFP (Fast Patten	For traffic	L2-4
Plus	Processor), ASI (Agere	management, QoS	
	System interface), RSP	and packet	
	(Routing switch	modification	
	processor)		
Intel IXP 1200	Specialized functional	yes	L2-4
	unit for hashing and		
	queue management		
IBM PowerNP	Co-processor to	yes	L2-4
	accelerate tree search and		
	frame manipulation		
	-		

• T1-1. it a star wall a s c. NID

Table 5

The architectural comparison for some NPs (Continues)				
Motorola C-5	Fabric processor, table	yes	L2-7	
	lockup unit, and queue			
	and buffer management			
Ezchip NP1	Four special processors,	Each TOP(Task	L2-7	
	MAC queue, and search	Optimized		
	engine	Processor) has its		
	_	ISA		
Cisco PFX	16 processor packet	yes	L2-4	
	forwarding function			
Cognigine	16 Processing element or	yes	L2-7	
	reconfigurable			
	communication unit			
AlchemyAU1xxx	MIPS processor	yes	L2-4	
BRECIS(MSP5000)	2 DSP processor	yes	L2-4	
Broadcom(SB1250)	2 MIPS 64 bit	no	L3-7	
Applied Microcircuit	Packet transform, search,	yes (optimized	L2-4	
	and policy engines	ins.)		
ClearSpeed	Table lookup engine	no	L2-4	
Virtese Sitera	Co-processor for lookup,	yes	L2-3	
	classification, and queue			
	management			

The architectural comparison for some NPs (Continues)

Conclusion

In this paper, we introduced the field of network processors by first presenting a description of what network processors are. Subsequently, we described the general, functional, and implementation requirements to such processors must meet. Afterwards, a brief survey of design approaches was discussed in conjunction with a summary of commercially available network processors.

Bibliography

- Husak D. Network Processors: A Definition and Comparison. [Electronic resource], 2004. – Access mode: <u>http://www.freescale.com/files/netcomm/doc/white_paper/COMMPROCWP.p_df?srch=1</u>
- 2. Giladi R. Network Processors. Architecture, Programming and Implementation. [Electronic resource], 2008. Access mode: _ http://www.booksgid.com/hardware/25846-network-processorsarchitecture.html
- 3. Wheeler B., Bolaria J. A Guide to Network Processors. Twelfth Edition. [Electronic resource], 2011. – Access mode: http://www.linleygroup.com/cms_builder/uploads/NPU_excerpt.pdf
- 4. Ahmadi M., Wong S. Network Processors: Challenges and Trends. [Electronic resource], 2004. Access mode: http://nsl.csie.nctu.edu.tw/NCTUnsReferences/1221 758 Pro Risk Paper.pdf