УДК 532. 781-785-548.1

Александров В.Д., Соболь О.В., Фролова С.А., Щебетовская Н.В. (Донбасская национальная академия строительства и архитектуры), **Стасевич М.В.** (ДонНТУ)

ПРИМЕНЕНИЕ МЕТОДОВ ГЕОМЕТРИЧЕСКОЙ ТЕРМОДИНАМИКИ ДЛЯ АНАЛИЗА ЭНЕРГИИ ГИББСА ПРИ КРИСТАЛЛИЗАЦИИ СПЛАВОВ ЭВТЕКТИЧЕСКОГО ТИПА

Методами геометрической термодинамики проанализирована температурная зависимость свободной энергии Гиббса G при кристаллизации бинарных систем A - B, образующих в твердом состоянии сплавы эвтектического типа.

В статье [1] нами был опубликован анализ температурной зависимости свободной энергии Гиббса G от температуры T методами геометрической термодинамики при кристаллизации бинарных систем с неограниченной растворимостью компонентов в жидком состоянии и ограниченной и неограниченной растворимостью компонентов в твердой фазе. В данной работе применен подобный подход к бинарным системам A+B, образующим в твердом состоянии сплавы эвтектического типа без взаимной растворимости этих компонентов.

В значении термодинамической функции G(T) при постоянном давлении для простого вещества в однофазном состоянии можно выделить ряд вкладов различного происхождения [2]:

$$G(T) = H_0 + G_{\text{эл}}(T) + G_{\text{гарм}}(T) + G_{\text{анг}}(T) + G_{\text{магн}}(T) + G_{\text{деф}}(T). \tag{1}$$

Первый — энтальпия (H_0) при $0 \ K$ — надлежащим выбором начала отсчета энергии может быть обращен в нуль, но только для одной из возможных структур, например, твердой изоморфной фазы. Эта величина получается из квантово-химических расчетов. Второй G_{an} связан с тепловым возбуждением электронной подсистемы и выражается через коэффициент электронной теплоемкости ү, пропорциональный плотности электронных состояний на уровне Ферми и равен $G_{3n} = -\gamma \cdot T^2/2$ Электронный вклад существенен для металлов и их сплавов. Третий $G_{\mathsf{гарм}}$ и четвертый $G_{\mathsf{анг}}$ уравнения (1) описывают вклад колебаний кристаллической решетки. При этом доминирует вклад $G_{\text{гарм}}$ в приближении гармонических колебаний, а $G_{\text{анг}}$ учитывает поправки на отклонение от строго гармонического поведения и дает для кристаллов относительно малую поправку к нему. Для жидких и аморфных тел, наоборот, доминирует «ангармонический» фактор $G_{\text{анг}}$. Пятый магнитный вклад имеет заметную величину только для сильномагнитных веществ. Наконец, дефекты вносят свою лепту ($G_{\text{деф}}$) в общую энергию G для кристаллических тел.

Перечисленные факторы свидетельствуют о чрезвычайно сложной зависимости G=f(T), практически не поддающейся точному анализу для конкретных веществ. Феноменологический подход к анализу функции G=f(T) для индивидуального однофазного вещества A (или B) сводится к анализу

энергий $G^A=H^A-S^AT$ или $G^B=H^B-S^BT$, где $S^A=\int\limits_0^T C_p^A dT$ или

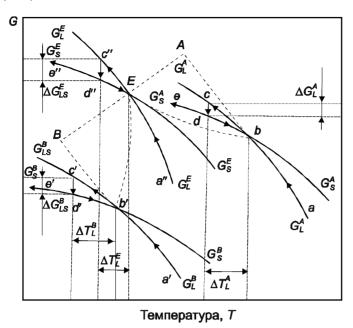
$$S^{B} = \int_{0}^{T} C_{p}^{B} dT$$
 — энтропии компонентов A и B; $H^{A}, H^{B}, C_{p}^{A}, C_{p}^{B}$ — энтальпии и

теплоемкости этих же компонентов. На рис. 1 показаны подобные зависимости для жидкой $G_L^A(T), G_L^B(T)$ и для твердой $G_S^A(T), G_S^B(T)$ фаз [3] для компонентов A (справа) и B (слева). В силу того, что полный дифференциал dG = -SdT + VdP (где S — энтропия, V — объем, P — давление) и $(\partial G^A/\partial T)_P < 0$ и $(\partial G^B/\partial T)_P < 0$, с ростом температуры кривые $G^A(T)$ и $G^B(T)$ будут понижаться и будут обращены выпуклостью вверх, т.к. $(\partial^2 G^A/\partial T^2) < 0$ и $(\partial^2 G^B/\partial T^2) < 0$.

В точке в пересекаются кривые $G_L^A(T)$ и $G_S^A(T)$, а в точке в с— кривые $G_L^B(T)$ и $G_S^B(T)$. Эти точки соответствуют температурам плавления T_L^A компонента А и T_L^B компонента В. При этих температурах соблюдается равновесие, т.к. $G_L^A=G_S^A$ в точке в и $G_L^B=G_S^B$ в точке в с Путь истинной зависимости G(T) с учетом фазового превращения и охлаждения расплава проходит через точки a, в, е для компонента А и через точки a с в с для компонента В.

Видно, что выше температуры T_L^A (или T_L^B) устойчива жидкая фаза, а ниже этих температур твердая фаза, т.к. в любой точке энергия Гиббса одной из фаз меньше энергии Гиббса другой фазы в этой же точке.

При изучении фазовых превращений важен анализ разности энергий Гиббса $\Delta G = G_{\alpha} - G_{\beta}$ между сосуществующими фазами α и β :


$$\Delta G = H_0 + \Delta G_{\text{\tiny 2Л}} + \Delta G_{\text{\tiny Гарм}} + \Delta G_{\text{\tiny АНГ}} + \Delta G_{\text{\tiny MAITH}} + \Delta G_{\text{\tiny Деф}} + \Delta G_{\text{\tiny ПОВ}}. \tag{2}$$

В данном случае появляется новое слагаемое $\Delta G_{\text{пов}}$, связанное с наличием межфазной поверхностной энергией.

В зависимости от рода фазовых превращений вклад ряда членов в (2) становится малозначительным, тогда как на первый план выдвигаются другие. Так, при резком изменении электронных свойств в процессе фазовых превращений существенен вклад $\Delta G_{_{3Л}}$; при превращении в точке Кюри ферромагнетика в парамагнетик — вклад $\Delta G_{_{магн}}$ и т.д. При кристаллизации решающую роль играют объемные конфигурационные составляющие $\Delta G_{_{V}} = \Delta G_{_{гарм}} + \Delta G_{_{анг}}$, а также $\Delta G_{_{пов}}$ и $\Delta G_{_{деф}}$. Феноменологический подход приводит к зависимости ΔG от переохлаждения ΔT^- при кристаллизации вещества:

$$\Delta G = \Delta H - \Delta ST = \Delta H - \frac{\Delta H}{T_L} T = \frac{\Delta H \Delta T^-}{T_L},$$
 (3)

где ΔH — энтальпия превращения, $\Delta T^- = T_L - T$, T_L - температура превращения.

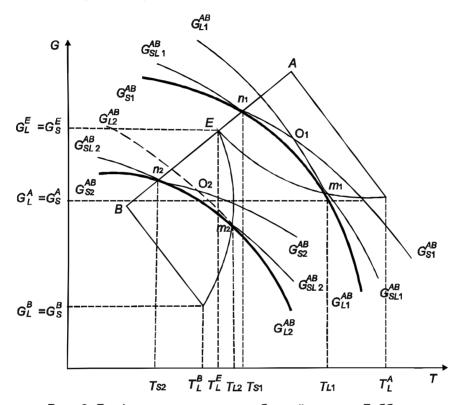
Рис. 1. Графики температурной зависимости энергии Гиббса G от температуры для жидкой (G_L) и твердой (G_S) фазы, построенные для чистых компонентов A и B, а также эвтектического сплава E.

Подобная зависимость $\Delta G = f(\Delta T^{-})$ универсальна для любого превращения относительно соответствующих точек фазового превращения (температур плавления простых веществ химических температур соединений, ликвидуса T_{L} и солидуса T_{S} для сплавов и др.) На рис. 1 наглядно видна зависимость $\Delta G_{IS} = f(\Delta T^{-})$ при кристаллизации компонентов А и В.

Для сплавов в выражении (2) добавляется энергия смешения $\Delta G_{\text{смеш}}$ компонентов, что еще более усложняет анализ зависимости ΔG не

только от температуры, но и от концентрации компонентов x_A , x_B , энергии межмолекулярного взаимодействия u_{AB} , от типа растворов. Так для бинарных регулярных растворов согласно статистической модели [2-3]:

$$\Delta G_{\text{\tiny CMEIII}} = x_A x_B u_{AB} + RT(x_A \ln x_B + x_B \ln x_A), \qquad (4),$$

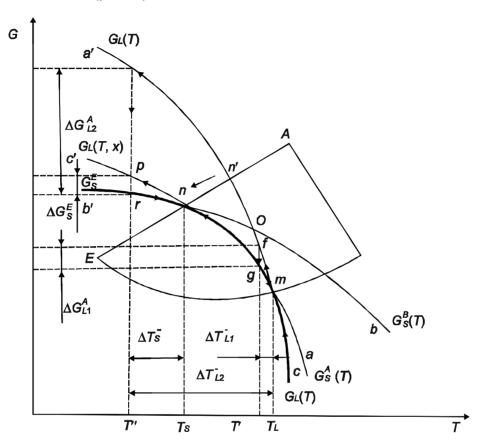

а для других типов растворов и моделей эта зависимость еще сложнее.

При кристаллизации сплавов следует иметь ввиду, что состояние системы проходит через три зоны — жидкую, жидко-твердую и твердую. Учитывая отсутствие в литературе надежных данных по зависимости G=f(T,x) для сплавов, можно лишь провести качественную оценку методами геометрической термодинамики значения $G_L^{AB}(T)$, $G_{LS}^{AB}(T)$, $G_S^{AB}(T)$ для указанных областей.

Рассмотрим бинарную систему A-B эвтектического типа без взаимной растворимости компонентов в твердой фазе. Здесь возможны два варианта анализа энергии Гиббса. Первый — это анализ температурной зависимости $G_L^{AB}(T)$, $G_{LS}^{AB}(T)$, $G_S^{AB}(T)$ для сплава A-B фиксированного состава с учетом фазовых превращений. Второй — анализ $G_L(T)$ для жидкой фазы фиксированного состава, $G_S^A(T)$, и $G_S^B(T)$ для кристаллов A и B, т.к. имеем в конечном итоге механическую смесь кристаллов индивидуальных веществ A и B с учетом изменения концентрационной зависимости $G_L = f(T,x)$ в области жидко-твердого состояния.

На рис. 2 показан первый из предполагаемых вариантов как для доэвтектических (1) так и для заэвтектических (2) сплавов.

Для доэвтектического сплава 1 фиксированного состава ниже температуры T_{L1} должны сходиться на линии m_1n_1 три кривые: $G_{L1}^{AB}(T)$, $G_{LS1}^{AB}(T)$, и $G_{S1}^{AB}(T)$. Выбор этих энергий связан с тем, что выше T_{L1} устойчив жидкий раствор, ниже температуры ликвидус выделяются А-кристаллы, а при температуре солидус T_{S1} затвердевает смесь А-В кристаллов. При этом общее содержание компонентов A и B сохраняется неизменным как выше T_{L1} , так и ниже T_{L1} и T_{S1} . Выше T_{L1} $G_{L1}^{AB} < G_{LS1}^{AB} < G_{S1}^{AB}$. Между T_{L1} и T_{S1} до точки O_1 $G_{LS1}^{AB} < G_{L1}^{AB} < G_{L1}^{AB} < G_{L1}^{AB}$. Ниже эвтектической температуры T_{9} , $G_{S1}^{AB} < G_{LS1}^{AB} < G_{L1}^{AB}$.


Рис. 2. Графики зависимости свободной энергии Гиббса для жидкой G_L^{AB} , жидко-твердой G_{LS}^{AB} и твердой G_S^{AB} фаз для доэвтектических (1) и заэвтектических (2) сплавов фиксированного состава.

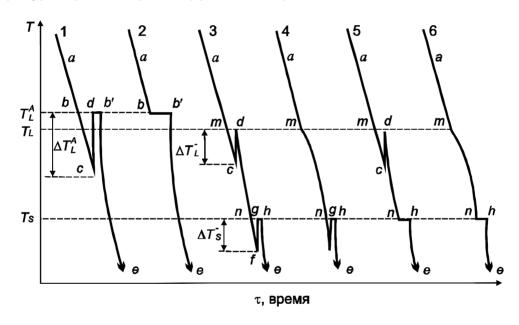
Для заэвтектической зоны 2 сходятся кривые $G_{L2}^{AB}(T)$, $G_{LS2}^{AB}(T)$, $G_{S2}^{AB}(T)$ а их поведение аналогично подобным зависимостям для доэвтектической области 1, за исключением того, что между температурами T_{L2} и T_{S2} выделяются B-кристаллы.

На рис. 2^{\cdot} жирными линиями выделены изменения энергии Гиббса для остывающей жидкой фазы, равновесной кристаллизации между T_L и T_S и дальнейшего охлаждения твердой фазы.

Примеры, разобранные на рис.2, относятся к анализу зависимости энергий Гиббса в разных фазовых областях при неизменной концентрации компонентов, в том числе для жидко-твердого состояния. Но даже в этом состоянии общая концентрация компонентов А и В остается постоянной, т.к. при выпадении, например, А-кристаллов в доэвтектической области расплав обедняется компонентом А и обогащается компонентом В.

С учетом этого обстоятельства возможен вариант анализа энергий Гиббса G_S^A и G_S^B твердых компонентов A и B и энергий $G_L(x,T)$ для жидкого раствора. Дабы избежать спекуляций о влиянии концентрации второй компоненты на G_S^A и G_S^B , рассмотрим одну лишь доэвтектическую зону диаграммы состояния для механической смеси без взаимной растворимости компонентов A и B (рис. 3).

Рис. 3. Графики зависимости энергии Гиббса от температуры для жидкой G_L , твердых G_S^A , G_S^B фаз для сплава образующего твердую механическую смесь с учетом ее концентрационной зависимости в двухфазной доэвтектической области.


Пусть кривая $G_S^A(T)$ проходит через точки amnc', кривая $G_S^B(T)$ — через точки bonb', кривая $G_I(T)$ — через точки cmon'a'.

В двухфазной области от точки m до точки n G_L зависит не только от температуры, но и от концентрации x, т.к. при кристаллизации происходит изменение фазового состава жидкости (она обогащается компонентом В). В результате кривая $G_L(x,T)$ будет смещаться к эвтектике Э, точка n' переместиться к точке n, а новая кривая $G_L(x,T)$ при некоторой фиксированной избыточной концентрации x одной из компонент (в нашем случае компонентом В) будет проходить через точки cmnc'. Пусть кристаллизация будет иметь вид cminb' (выделен жирной линией) с квазиравновесной кристаллизацией в любой точке i между m и n, т.к. $G_{Si}^A = G_{Li}(x)$. При этом в точке m будут выпадать кристаллы A, а в точке n— эвтектика (смесь A+B). В последнем случае кривые

 $G^{\it B}_{\it S}(T)$ и $G^{\it A}_{\it S}(T)$ ниже линии солидуса (эвтектической прямой) сливаются и проходят через точки $\it nb'$.

Рассмотренные выше (рис. 1–3) зависимости энергии Гиббса от температуры и концентрации позволяют с термодинамических позиций обосновывать различные виды кристаллизации от квазиравновесных (КРК) с практическим отсутствием переохлаждений до неравновесно-взрывных (НРВК) со значительными переохлаждениями, указывать на их направления и движущие силы.

Для простых веществ и химических соединений путь кристаллизации типа КРК (рис. 1) проходит через точки abc, а типа НРВК по схеме a @ b @ c @ d @ b @ e с движущей силой $\Delta G_{LS}^A(\Delta T_L^A)$. Аналогично для веществ В при КРК путь кристаллизации лежит через точки a'b'c', а типа НРВК по схеме $a' \to bc$ @ cc @ dc @ bc @ ec с движущей силой $\Delta G_{LS}^B(\Delta T_L^B)$. Подобные разновидности процессов кристаллизации в зависимости от условий эксперимента и типа вещества обнаружены на Ві, Те, Sb, S, H₂O, PbCl₂, Na₂S₂O₃·5H₂O и др. [4–10]. Они показаны в виде схематических графиков охлаждения в координатах температура—время на рис. 4 (кривая 1 и 2).

Рис. 4. Кривые охлаждения для чистых сплавов (1, 2) и сплавов (3–6) эвтектического типа с различными переохлаждениями относительно температур ликвидуса ΔT_L^- и солидуса ΔT_S^- .

В последнее время аналогичные данные о КРК и НРВК появились и при исследовании сплавов эвтектического типа в системах In-Sb, In-Bi, $H_2O-Na_2S_2O_3$, причем наблюдаются различные сочетания относительно линий ликвидуса (L) и солидуса (S) (рис. 4) [11–12].

Наличие одновременных ΔT_L^- и ΔT_S^- , либо их отсутствие относительно линий ликвидус и солидус характеризуют кривые 3 и 6 соответственно. Кривая охлаждения 4 свидетельствует об отсутствии ΔT_L^- и наличии ΔT_S^- , а кривая 5, наоборот, о наличии ΔT_L^- и отсутствии ΔT_S^- . «Пути» подобных разновидностей кристаллизации в сплавах можно проследить и на кривых зависимости

свободных энергий Гиббса от температуры. На примере доэвтектического сплава (рис. 3). Сопоставляя кривые 3–6 на рис. 4 с путями кристаллизации на рис. 3 можно сделать следующие выводы:

- кривая 3 на рис. 4 с $\Delta T_L^- \neq 0$, $\Delta T_S^- \neq 0$ соответствует ходу кривой G(T) на рис. 3 по схеме $c \ @ \ m \ @ \ f \ @ \ g \ @ \ m \ @ \ g \ @ \ n \ @ \ p \ @ \ r \ @ \ n \ @ \ bc$ с движущими силами «фазовых превращений» $\Delta G_L^A > 0$, $\Delta G_L^E > 0$;
- кривая 4 (рис. 4) с $\Delta T_L^- = 0$, $\Delta T_S^- \neq 0$ соответствует изменению G(T) по схеме $c \ @ m \ @ n \ @ p \ @ r \ @ n \ @ b c \ c \ \Delta G_L^A \approx 0$, $\Delta G_L^E > 0$;
- кривая 5 (рис. 4) с $\Delta T_L^- \neq 0$, $\Delta T_S^- = 0$ соответствует изменению G(T) по схеме $c \ @ m \ @ f \ @ g \ @ m \ @ n \ @ b$ (рис. 3) с $\Delta G_L^A > 0$, $\Delta G_L^E \approx 0$;
- кривая 6 (рис. 4) с $\Delta T_L^-=0$, $\Delta T_S^-=0$ соответствует изменению ${\it G(T)}$ по схеме $c \ @ m \ @ n \ @ b \ c$

Что касается эвтектического сплава E, то при кристаллизации с $\Delta T_L^E = 0$ и $\Delta G_{LS}^E \approx 0$ ход кривой G(T) возможен по пути $a^2 \mathbb{R}$ E \mathbb{R} e 2 а при кристаллизации с $\Delta T_L^E \neq 0$, $\Delta G_{LS}^E > 0$ кривая G(T) будет идти по схеме $a^2 \mathbb{R}$ E \mathbb{R} e 2 (рис. 1).

Литература

- 1. **Александров В.Д.**, **Фролова С.А.** Анализ температурной зависимости свободной энергии Гиббса при кристаллизации сплавов методами геометрической термодинамики // Наукові праці Донецького національного технічного університету. Серія: Хімія і хімічна технологія, 2005. Вип. 95. С. 42–48.
 - 2. **Соколовская Е.М., Гузей Л.С.** Металлохимия. М.: МГУ, 1986. 264 с.
- 3. **Коттрелл А.Х.** Строение металлов и сплавов. М.: Гос. НТИ л-ры по черн. и цв. металлургии, 1961. 288 с.
- 4. **Александров В.Д.**, **Петренко В.И.** Эффект скачкообразного перехода от равновесной кристаллизации капель висмута к неравновесно-взрывной // Письма в ЖТФ, 1983. Т. 9. В. 22. С. 1354–1356.
- 5. **Александров В.Д., Петренко В.И.** Новые экзо-и эндотермические эффекты в расплаве теллура, обнаруженные методом БТД // Расплавы, 1988. Т. 2. В. 5. С. 29–34.
- 6. **Александров В.Д., Петренко В.И.** Поэтапное плавление и кристаллизация двухлористого свинца // Расплавы, 1992. № 3. С. 83–85.
- 7. **Александров В.Д.** Влияние термической предыстории расплава сурьмы на скачкообразный переход от равновесной к неравновесно-взрывной кристаллизации // Неорганические материалы, 1992. Т. 28. № 4. С. 709–714.
- 8. **Александров В.Д., Баранников А.А.** Термические эффекты при кристаллизации капель воды в естественных условиях // Журнал физической химии, 2000. Т. 74. № 4. С. 595_599
- 9. **Александров В.Д., Баранников А.А.** Исследование влияния термической предыстории на фазовые превращения в элементарной сере // Украинский химический журнал, 2001. Т. 67. № 2. С. 88–93.
- 10. Александров В.Д., Соболь О.В. Экспериментальные исследования перегрева жидкой фазы относительно температуры плавления на процесс кристаллизации натрия тиосульфата пятиводного // Наукові праці Донецького національного технічного університету. Серія: Хімія і хімічна технологія, 2006. Вип. 108(8). С. 65–69.
- 11. Александров В.Д., Раухман М.Р., Боровин В.И., Стрельникова И.А., Ермакова Н.Г. Построение диаграммы состояния в системе индий-сурьма по предкристаллизационным переохлаждениям и критическим перегревам // Металлы, 1992. № 6. С. 186–195.