стеклянного сосуда над слоем ТБО. Анализ газовых проб выполнялся с помощью хроматографа «Модель-3700» (колонка длиной 2 м и диаметром 3 мм, молекулярные сита) а также фотоколориметра ФЭК-56М.

Как видно из рис. 3, эмиссия газов из ТБО, обусловленных их биодеградацией, имеет сходный характер и проходит через максимум, что хорошо коррелирует с рис. 1 и 2.

Это означает, что и на реальных полигонах ТБО максимальная эмиссия биогаза со всей площади полигона (а это миллионы кубометров в год!) будет иметь место в период от первой трети до половины полного срока его эксплуатации.

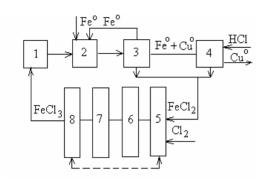
Литература

1. **Gendebien A. and others.** Landfill gas. — Comission of the European Communities. — Brussels, 1992. — 865 p.

Ó Краснянский М.Е., Бельгасем А., Макарова Е.Н., Сбоева А.Н., 2006

УДК 621.794.42:546.56

Хоботова **Э.Б., Ларин В.И., Добриян М.А., Голик Е.В., Даценко В.В.** (Харьковский национальный автомобильно-дорожный университет, Харьковский национальный университет им. В.Н. Каразина)


РЕШЕНИЕ ЭКОЛОГИЧЕСКИХ ПРОБЛЕМ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ТРАВЛЕНИЯ МЕДИ

Разработан малоотходный ресурсосберегающий способ регенерации отработанных растворов травления меди. Оптимизированы параметры протекания всех его стадий. Показаны преимущества данного технологического цикла травление-регенерация. Результаты работы могут быть использованы на практике в цехах изготовления плат печатного монтажа.

Отсутствие простых и экономичных способов регенерации сточных вод объясняет однократное использование многих технологических растворов и последующий их сброс. Данная проблема касается и участков травления меди при изготовлении плат печатного монтажа [1]. При травлении меди широко используются растворы на основе хлорида железа(III) [1,2], которые по мере насыщения медью становятся непригодными и требуют замены. Создание циклических безотходных участков травления и регенерации позволит решить ряд экологических проблем, стабилизировать процесс травления, повысить его производительность. На практике используют как химические, так и электрохимические способы регенерации [3–8], позволяющие выделять медь из раствора в порошкообразной или пластинчатой форме, в которой она может быть использована в промышленности.

Работа выполнена в рамках государственной программы охраны окружающей среды — 4-ое направление научно-исследовательских работ Министерства образования и науки Украины.

Целью работы являлось решение экологических проблем участков травления меди, в частности, снижение количества токсичных медьсодержащих вод. Решение этой проблемы связано с разработкой способа регенерации отработанных травильных растворов (ОТР) и оптимизацией параметров всех его стадий.

Рис. 1. Схема регенерации ОТР на основе $FeCl_3$ и $CuCl_2$: 1 — ванна травления; 2 — реактор для цементации; 3 — резервуар для фильтрации; 4 — резервуар для промывки железо-медного осадка; 5–8 — колонны хлорирования.

Нами предложен химический регенерации железо-медноспособ хлоридных ОТР, позволяющий удалять медь из раствора при контактном вытеснении на железных стружках, а окисление образовавшегося Fe осуществлять хлорированием раствора. На практике используется контактное вытеснение меди более на электроотрицательных металлах [9]. Схема способа регенерации представлена на рис.1.

Из ванны травления 1 ОТР, содержащий компоненты $FeCl_2$, $FeCl_3$ и $CuCl_2$, подают в реактор цементации 2, где протекает контактное выделение меди на железных стружках

$$Cu^{2+} + Fe \rightarrow Cu + Fe^{2+}, \tag{1}$$

а также взаимодействие ионов Fe³⁺ и H₃O⁺ с металлическим железом

$$2 \text{ Fe}^{3+} + \text{Fe} \rightarrow 3 \text{ Fe}^{2+},$$
 (2)

$$2 H_3O^+ + Fe \rightarrow H_2 + Fe^{2+} + 2 H_2O.$$
 (3)

В ходе реакции смесь разогревается до 65–70°С. Величина показателя рН раствора повышается, поэтому перед последующим хлорированием раствора требуется его подкисление.

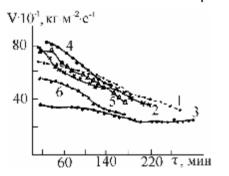
Избыток железа по отношению к меди Cu:Fe=(1:1,6)÷(1:1,7) обеспечивает быстрое протекание реакции цементации. В течение 45–60 мин из раствора выделяется более 90% всей меди. Так как термодинамическая вероятность и скорость реакции контактного обмена намного выше, чем скорости реакций (2) и (3), то при избытке металлического железа осуществляется в первую очередь контактное вытеснение меди.

Если Cu:Fe = 1:1, то цементация меди происходит в течение 15 часов. За этот период из раствора при повышении величины показателя pH выпадает осадок, состоящий из 60% Fe(OH)₃ и 40% Cu(OH)₂, смешивающийся с постоянно удаляемой с помощью мешалки железо-медной твердой фазой. Если не обеспечивается избыток железной стружки, реакция цементации может затормозиться. В этом случае начнут протекать реакции (2) и (3), причем последняя оказывает особо отрицательное влияние на ход контактного обмена.

Удаляемая цементная медь включает примеси железа. Плотный железный сердечник по окончании процесса отделяется магнитом и используется для цементации в новом цикле. Железо-медный цементный осадок подают после фильтрации в резервуар для промывки 4, где происходит растворение примесного железа в соляной кислоте (1:1) по реакции, аналогичной реакции (3). В результате подобной промывки получается товарная медь, имеющая высокую степень чистоты. Образующийся раствор FeCl₃ поступает в колонны хлорирования 5–8 и смешивается с фильтратом после цементации. Этот раствор выполняет одновременно две функции — подкисляет раствор перед хлорированием и разбавляет его. Объем соляной кислоты колеблется в пределах 27–40% от первоначального объема ОТР

 $FeCl_3$, что позволяет поддерживать pH на необходимом уровне, практически полностью компенсировать убыль раствора после отделения цементного осадка и исключить корректировку раствора по концентрации $FeCl_3$ в конце цикла регенерации.

В ходе контактного обмена концентрация $FeCl_2$ в растворе увеличивается, поэтому, если перед хлорированием раствор предварительно не разбавлять, то в колоннах 5–8 может начаться кристаллизация $FeCl_3$ - $6H_2O$.


Фильтрат, поступающий на хлорирование, содержит в своем составе небольшое количество меди(II), которая не только не мешает последующему использованию раствора при травлении, но даже оказывает на этот процесс каталитическое действие.

Хлорирование раствора осуществляется в адсорбционной системе, состоящей из четырех последовательно соединенных насадочных колонн, заполненных фарфоровой насадкой или кольцами Рашига. Улавливание хлора происходит в двух первых колоннах, незначительное количество поглощается в третьей, четвертая колонна имеет санитарное назначение. Раствор периодически циркулирует из колонн 5 и 6 в 7 и 8. Добавление хлора на выходе составляет 0,15–0,25 МПа. Для отвода тепла хлорирования в рубашки теплообменников колонн подают оборотную воду, за счет чего устанавливается температурный режим хлорирования на уровне 60–80°С.

В результате хлорирования железо (II) практически полностью окисляется до железа (III)

$$2 \text{ Fe}^{2+} + \text{Cl}_2 \rightarrow 2 \text{ Fe}^{3+} + 2 \text{ Cl}^{-}$$
. (4)

Избыточный хлор растворяется в молекулярной форме, повышая окислительные свойства травильного раствора.

Рис. 2. Изменение скорости травления меди, моль \cdot л $^{-1}$.

На рис. 2 показано изменение скорости травления меди в растворах составов: 1 — 2,795 Fe^{3+} + 0,045 Cu^{2+} (раствор после хлорирования); 2 — 2,92 $FeCl_2$; 3 — 2,70 $FeCl_3$ + KCl до насыщения; 4 — 1,8 Fe^{3+} + 0,029 Cu^{2+} + 0,0075 Fe^{2+} (раствор после хлорирования); 5 — 1,86 $FeCl_3$; 6 — 1,83 $FeCl_3$ + KCl до насыщения (неподвижный медный электрод).

Сравнение процессов травления меди в регенерированных растворах и в растворах $FeCl_3$ той же концентрации без и с добавками KCl до насыщенного раствора

показывает, что скорость растворения меди выше для растворов, прошедших регенерацию (рис. 2, сравните кривые 1 и 2, 3; 4 и 5, 6). Этот факт можно объяснить растворением хлора в растворах, прошедших стадию хлорирования. Молекулярный хлор, наряду с ионами Fe (III), является окислителем меди. Введение же хлорид-ионов вплоть до насыщения раствора не оказывает такого эффекта: наблюдается снижение скорости травления (рис. 2, сравните кривые 1 и 3; 4 и 6). Емкость растворов по стравленной меди и характер уменьшения скорости травления во времени остаются практически неизменными для всех изученных растворов.

Рассмотренный способ регенерации позволяет решить ряд экологических проблем и имеет следующие преимущества: практическое отсутствие отходов, простота и быстрота осуществления всех стадий процесса, высокие значения основных технических характеристик при использовании регенерированного

раствора, получение чистого утилизированного продукта — металлической меди, экономное использование реагентов – железной стружки и соляной кислоты.

Литература

- 1. **Флеров В.Н.** Химическая технология в производстве радиоэлектронных деталей. М.: Радио и связь, 1988. 104 с.
- 2. **Наумов Ю.И., Кучеренко В.И., Флеров В.Н.** Оптимизация состава железо-медно-хлоридного раствора размерного травления меди // Изв. вузов. Химия и хим. Технология, 1979. Т. 22. № 3. С. 340–343.
- 3. **Кучеренко В.И.** Разработка принципов замкнутой технологии «Травление регенерация» и их реализация в производстве печатных плат: Автореф. дис... док. техн. наук. М., 1983. 39 с.
- 4. **Браяловский Б.С., Шепелева Л.П.** Извлечение меди из травильных растворов на основе FeCl₃ // Тез. докл. межресп. научно-техн. конф. «Прогрес. технол. электрохим. обраб. мет. и экол. гальван. произ-ва». Волгоград, 1990. С. 143–144.
- 5. **Способ регенерации** железомеднохлоридных травильных растворов: А.с. 1435660 СССР, МКИ С 23 G 1/36 / В.А. Михайловский, В.Е. Терновцев, Ю.С. Сергеев и др. Заявл. 11.08.86: Опубл. 07.11.89.
- 6. **Anode** ¾ **support system** for the direct electrorepining cement copper. Part I. Process conditions using horisontal rotary cathodes / R. Gana, M. Figueroa, L. Kattan et. al. // J. Appl. Electrochem, 1995. Vol. 25. № 3. P. 240–246.
- 7. Analysis of the presence of different contaminants on the copper electrodeposits morphology obtained from cement copper acid solutions / R. Gana, M. Figueroa, L.Kattan et. al. // J. Appl. Electrochem., 1999. Vol. 29. № 12. P. 1475–1479.
- 8. **Бабенко С.А., Пинигин С.А., Тасоев Р.И.** Исследование процесса цементации меди железными стружками // Изв. Томск. политехн. ин-та, 1976. Т. 257. С. 92–95.
- 9. **Способ регенерации** отработанных травильных растворов на основе хлорида железа (III): А.с. 1258876 СССР, МКИ С 23 G 1/36 / Д.Н. Грицан, В.И. Ларин, Э.Б.Хоботова и др. Заявл. 02.01.85; Опубл. 01.02.86.

Ó Хоботова Э.Б., Ларин В.И., Добриян М.А., Голик Е.В., Даценко В.В, 2006

УДК 628.1 – 628.3

Лунева О.В., Матлак Е.С., Костенко В.К. (ДонНТУ)

ОБОСНОВАНИЕ ВОЗМОЖНОСТИ ПРЕДОТВРАЩЕНИЯ ПОВТОРНОГО СИНТЕЗА ДИОКСИНОНОПОДОБНЫХ СОЕДИНЕНИЙ «ЗАКАЛИВАНИЕМ» ОТХОДЯЩИХ ГАЗОВ

В статье обоснована возможность предотвращения повторного синтеза диоксиноподобных соединений на выходе из реактора высокотемпературного пиролиза твердых бытовых отходов путем «закаливания» отходящих газов с помощью вихревого эффекта Ранке. Приведены результаты расчета параметров процесса, исходные условия которого связаны с технологией высокотемпературного пиролиза.

В связи с высокой экологической опасностью открытого (пламенного) сжигания твердых бытовых отходов (ТБО) в настоящее время в мировой и отечественной практике большое внимание уделяется их переработке прогрессивным методом термического разложения — методом высокотемпературного пиролиза [1]. При этом для уменьшения социальных, технических и экономических затруднений ставится задача разработки метода пиролиза неразделенных потоков ТБО. К сожалению, такие потоки отходов