Литература

- 1. **Карнаушенко Л.И.** Исследование и разработка методик для определения механических свойств сыпучих материалов: Автореф. дис. канд. техн. наук. Кривой Рог, 1970.
- 2. **РД РТМ** . Метод выбора оптимального типа питателей, смесителей и измельчителей.
- 3. **Гольдштейн М.Н.** Механические свойства грунтов. Основные компоненты грунта и их взаимодействие. М.: Стройиздат, 1973. 375 с.
- 4. **Бутхарейт Л.В., Унгул В.С., Остапенко М.А. и др.** Экспериментальные исследования процессов комплексной переработки бурых углей// Уголь Украины, 1996. № 9. С. 9–10.
- 5. **Андрианов Е.И.** Методы определения структурно-механических характеристик порошкообразных материалов. М.: Химия, 1982. 255 с.
- 6. **Гольдштейн М.Н., Царьков А.А., Черкасов И.И.** Механика грунтов, основания и фундаменты. М.: Транспорт, 1981. 320 с.
 - 7. Клейн Г.К. Строительная механика грунтов. М.: Стройиздат, 1977. 256 с.
- 8. **Гольдштейн М.Н.** Механические свойства грунтов. Напряженно-деформативные и прочностные характеристики. М.: Стройиздат, 1979. 304 с.
- 9. Веретельник С.П. Исследование продвижения шихты в камере непрерывного коксования с разработкой проталкивающего устройства: Автореф. дис. канд. техн. наук.-Москва, 1977.

© Остапенко M A Нестеров H A

УДК 662.741

Саранчук В.И. (ИнФОУ), Гребенюк А.Ф. (ДонНТУ), Власов Г.А. (АКХЗ), Чернова О.А., Збыковский Е.И. (ДонНТУ)

НОВЫЙ СПОСОБ ОТВОДА КОКСОВОГО ГАЗА

В результате исследований проведенных на промышленной батарее с двумя газосборниками предложен способ отвода коксового газа применение которого позволит получить коксовый газ с низким содержанием кислорода и смолу с низким содержанием твердых частиц что улучшит технико экономические показатели коксохимического производства

Задача эффективного охлаждения и очистки коксового газа является очень актуальной для современного коксохимического производства Украины. Это связано с огромным ресурсным потенциалом коксового газа как химического и энергетического сырья.

Существующие ныне схемы отвода парогазовых продуктов можно разделить по количеству газосборников на схемы с одним и двумя газосборниками.

При использовании двух газосборников коксовый газ из камеры коксования одновременно отводится двумя стояками в соответствующий газосборник, откуда через перекидной газопровод, в общий газопровод, соединяющий коксовую батарею с цехом улавливания [1, 2]. Этот способ имеет некоторые недостатки. Основным является перетекание охлажденного газа из одного газосборника в другой через подсводовое пространство из-за возникающей разницы давлений в газосборниках. Не менее значительным недостатком является нарушение теплового и гидравлического режима при забивании форсунок аммиачной воды в колене [3], поскольку это приводит к уменьшению температуры подсводового пространства. Все недостатки приводят к ухудшению качества кокса, а, следовательно, к снижению технико-экономических показателей производства.

Более усовершенствованной технологией является способ бездымной загрузки печей с двумя газосборниками и использованием паровой инжекции. Этот способ позволяет улучшить условия труда путем снижения пылевыделения во время загрузки камеры коксования. Также при его внедрении снижается содержание золы в смоле. При использовании этого способа газосборник коксовой стороны подключается только на время загрузки печей, а газосборник машинной стороны — с момента планирования шихты до конца коксования, что позволяет отводить основную часть парогазовых продуктов на один газосборник [4]. Недостатками этого способа являются низкое качество продуктов улавливания изза инжектирования газов паром или водой, что приводит к увеличению содержания кислорода в товарном коксовом газе и повышает зольность смолы, что в свою очередь приводит к возникновению дополнительного количества отходов.

При использовании инжекции при загрузке коксовых печей выход фусов составляет 50-700 кг/час и зависит от расхода пара на инжекцию Q, помола шихты П, скорости вращения радиальных скребков в механизированном осветлителе смолы v (рис. 1).

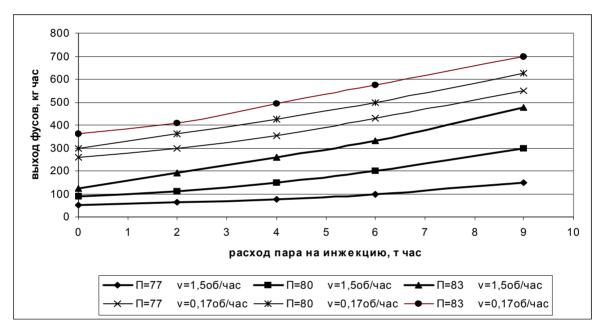
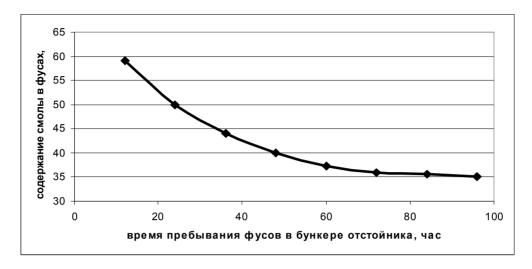


Рис. . Зависимость выхода фусов от технологических параметров


Кроме того, при отстаивании в механизированном осветлителе большая часть смолы не отделяется от фусов (рис.2).

Отсутствие надежного и эффективного способа охлаждения и отвода коксового газа, который позволит получать коксовый газ с низким содержанием кислорода и решит проблему образования большого количества фусов, заставляет проводить новые исследования в этом направлении.

С помощью специально разработанного оборудования был проведен эксперимент по отбору парогазовых продуктов из подсводового пространства промышленной камеры коксования. Смесь парогазовых продуктов беспрерывно отсасывалась газодувкой через цепь аппаратов, в которых газ охлаждался и очищался от химических продуктов коксования: смола, аммиак, бензол, пр. Опыт проводился на протяжении всего периода коксования, количество и состав продуктов замерялись каждый час.

Результаты эксперимента приведены в таблице 1.

Из этих данных видно, что в течение первого часа после загрузки шихты из камеры коксования отводится в газосборник коксовой стороны около 0,7 смолы, 0,3 коксового газа и 11 воды от их общего выхода за весь период

коксования. Вода при этом загрязнена угольной пылью, что приведет к образованию дополнительного количества фусов. Коксовый газ этого периода обогащен кислородом и азотом, что снижает его качество.

Таблица . Результаты исследования динамики выделения парогазовых продуктов коксования

Интервал времени, час	Выход смолы		Выход газа		Выход водного пара	
	, г	от ресурсов	, г	от ресурсов	, г	от ресурсов
0–1	8	0,7	9	0,27	706	11,0
1–3	80	6,9	74	2,23	670	10,4
3–5	154	13,4	254	7,65	805	12,5
5–7	338	29,3	699	21,07	1843	28,7
7–9	152	13,2	672	20,25	961	15,0
9–11	202	17,5	840	25,32	883	13,7
11–13	150	13,0	450	13,56	398	6,2
13–15	69	6,0	320	9,65	161	2,5
итого	1153	100,0	3318	100,0	6427	100,0

В связи с этим предлагается усовершенствовать способ отвода коксового газа с двумя газосборниками и использованием паро или гидроинжекции [5]. Для более эффективной очистки газа от воды и частичек угольной пыли предлагается отводить газ периода загрузки печей и начального периода коксования в течение 1 часа только в газосборник коксовой стороны. С технологической точки зрения этот способ легко внедрить на существующих коксовых батареях.

Во время периода загрузки и первого часа коксования клапан стояка газосборника машинной стороны закрывают, и все газы направляются на коксовую сторону. По прошествии одного часа клапан коксовой стороны закрывают, а машинной открывают, и оставшаяся часть газов отводится через газосборник машинной стороны.

Из газосборника коксовой стороны коксовый газ с повышенным содержанием кислорода и оксидов азота при температуре 80-85 С отводится в газовый холодильник, охлаждается, очищается от смолы и подается в газопровод обратного коксового газа, который идет на обогрев коксовых печей.

Смола из газосборника коксовой стороны вместе с угольной пылью и аммиачной водой направляется в отдельный отстойник. Высокое содержание угольной пыли в смоле потребует многостадийной очистки в отстойниках и центрифугах, что резко повысит стоимость конечного продукта и невыгодно с экономической точки зрения. Более рациональным является использование этой смолы вместе с фусами для обмасливания угольной шихты.

Из газосборника машинной стороны коксовый газ отводится по существующему газопроводу в цех улавливания для очистки газа от смолы, аммиака, бензольных углеводородов и сероводорода. Смола с невысоким содержанием твердых частиц стекает с аммиачной водой в аппаратуру для отстаивания.

Использование предложенного способа отвода коксового газа позволит отводить в газосборник машинной стороны газ с минимальным содержанием кислорода и твердых частиц, что значительно улучшит работу бензольного отделения и сероочистки, уменьшит количество вредных выбросов и отходов, а также позволит исключить установку перекидных газопроводов, которые объединяют газосборники коксовой И машинной сторон. преимуществом предлагаемого способа является получение смолы содержащей твердых частиц, что позволит значительно улучшить качество конечных продуктов. Твердые частицы, которые попадут в газосборник коксовой стороны с незначительным (0,7) количеством смолы, будут использоваться без дополнительного разделения. что дополнительный экономический эффект.

Кроме того, парогазовая смесь, которая поступает в газосборник коксовой стороны в течении 1 часа после загрузки содержит около 98 водяного пара, вследствие чего, при орошении аммиачной водой, происходит конденсация водного пара и поддерживается температура 80-90 С, что облегчает отвод смолы и фусов из газосборника и отделение их от воды. Отпадает необходимость дорогой очистки смолы от угольной пыли, из-за того, что она используется для обмасливания угольной шихты, улучшая качество кокса, что повышает общую эффективность производства. Подключение коксовых печей, в разные периоды только к одному газосборнику исключает перетекание охлажденного газа через подсводовое пространство и обеспечивает более стойкий гидравлический режим, что, в конечном итоге, приводит к улучшению качества кокса.

Литература

- 1. **Химическая технология твердых горючих ископаемых** / под ред. Г.Н. Макарова и Г.Д.Харламповича. М.: Химия, 1986.
- 2. **Справочник по химии и технологии твердых горючих ископаемых** / Под ред. А.Н.Чистякова. СПб: изд. Комнания Синтез , 1996.
- 3. **Литвинов Е.М., Кафтан С.И., Вольфковский Г.М.** Нарушение работы газоотводящей арматуры коксовых печей с двумя газосборниками // Кокс и химия, 1978. № 4. С. 16–19.
- 4. **Варшавский Т.П.** Способ бездымной загрузки коксовых печей: Авт. Св № 145545, класс 10а, 19/03. Опубл в Бюллетени изобретений . № 6, 1962г.
- 5. Деклараційний патент на корисну модель № 7874, Україна, 7 С10В27/04. Саранчук В.І., Гребенюк О.Ф., Власов Г.О., Чернова О.О., Збиковський Є.І. опубл. 15.07.2005, Бюллетень изобретений. № 7.
 - © Саранчук В И Гребенюк А Ф Власов Г А Чернова О А Збыковский Е И