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The dynamics of a vibration machine with piecewise linear elastic ties under parametric
harmonic excitation 1s investigated. Different designs of elastic elements with periodically
time-varying elasticity are described. Specific non-linear features of parametric oscillations
in the system under study are revealed (the invariance of parametric vibration regime to
possible disturbance of phase co-ordinates, conditions of limitedness of amplitude of
parametric vibrations, spectral features of non-linear parametric regimes, etc.). By the
utilization of these non-linear effects, a procedure for the design of the main parameters of
a parametric vibromachine 1s proposed.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

At present, four main methods of vibration excitation in mechanical systems are known:
excitation with the aid of external force, kinematic excitation, self-excitation and parametric
excitation [ 1]. Of these four excitation methods, only the parametric one 1s not widely used
in vibration engineering. From the authors’ point of view the reasons for such situation may
be the following.

Evidently, due to the unlimited rise of amplitude of parametric oscillations, even in
dissipative systems (this i1s predicted by linear theory [2, 3]), the possibility of the practical
application of parametric resonance in vibromachines with linear elastic and dissipative ties
was ruled out. In other examples, numerous publications concerned with the dynamic
analysis of non-linear parametric vibrations (e.g., see references [2-7]) are not carried to
practical applications. The reliable designs of structural machine members, in which
clasticity or mass may periodically change with time, have not been developed.
Conventionally, in mechanics, parametric resonance 1s considered as a negative
phenomenon, which must be controlled. In mechanical engineering, this situation exists
despite the fact that properties of parametric oscillations are widely used 1n radio, computer
and laser engineering [ 8].

This paper presents some new results in the field of non-linear parametric oscillations,
which may be of significant importance in designing technological vibromachines with
parametric excitation.

0022-460X/02/$35.00 © 2002 Elsevier Science Ltd. All rights reserved.
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Figure 1. Schematic of the parametric elastic element in the form of a rotating disk: 1 and 2, mternal and
external rigid rings; 3, elastic elements (springs); 4, rigid solid shaft; 5, bearings; 6, working head of vibromachine.

2. DESIGNS OF ELASTIC ELEMENTS WITH PERIODICALLY
TIME-VARYING ELASTICITY

During the development of vibromachines with parametric excitation, different designs of
mechanical elements with periodically time-varying elasticity have been considered.

Parametric vibration devices, elastic elements of which can be made as flexible bars, are
structurally simpler. Periodic change in time of a bar’s elasticity is achieved by varying its
length or through a periodic axial compression force on the bar. Different designs of
parametric elastic elements of such type have been proposed [2, 9, 10]. The common
demerit of all these designs lies in their great dimensions and mass.

More compact and reliable in design are parametric vibration devices with rotating
elastic elements. An elementary example may be a rotating assembled shalft, parts of which
are connected to each other by special couplings with anisotropic elastic characteristics [9,
11]. But this parametric elastic element affords rather small values of the elasticity ripple
factor (of the order of 0-05-0-10 dimensionless units and under).

Sufficient rise of non-dimensional amplitude of parametric excitation is achieved 1n
another design of parametric elastic element made in the form of a rotating disk (Figure 1)
[9, 12]. This disk consists of two rings, 1 and 2, connected one with another by elastic
elements (springs 3). Internal ring 1 is slipped over on a rigid solid shaft 4, but external ring
2, through balls 5, is connected with the working head, 6, of the vibromachine. Upon
rotation of shaft 4 the elasticity of the disk in the radial direction 1s periodically changed,
and as a result, parametric vibrations of working head 6 are excited. This design of
time-varying elastic element, due to its reliability and high achievable values of ripple factor,
has been used as a basis for developing a vibromachine with parametric excitation.

Parametric excitation may also be realized by pneumatic elastic elements with variable
air pressure. The advantage of such a design lies in the possibility of increasing the rated
load of a vibromachine. A specific example of a pneumatic parametric vibroexciter is
presented in reference [9]. Besides, this book presents some other designs of mechanical
elements with periodically time-varying elasticity.
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At present, the mechatronics systems offer other possibilities for practical realization of
parametric excitation [ 13, 14].

3. MATHEMATICAL MODEL

The vibromachine model to be analyzed is a single-degree-of-freedom vibratory system
(Figure 2). As a parametric vibroexciter, a rotatable elastic disk with anisotropic elastic
characteristic is used (see Figure 1). With rotation of elastic disk with angular velocity €2 the
stiffness coefficient of the system in the x direction varies as

k(t) = ko (1 + pqsin Q).

An indispensable condition of the normal operation and longevity of vibromachines with
parametric excitation requires a special system for limitation of amplitude of parametric
oscillations. Such a limitation is necessary because under parametric excitation (unlike
forced) linear damping cannot prevent an unlimited rise of the amplitude of vibrations,
creating dangerous build-up. Limitation of the amplitude of parametric vibrations may be
achieved by non-linear damping. But parameters of non-linear damping are difficult to
control during the operation of the vibromachine, and therefore it 1s practically impossible
to adjust the required value of the amplitude of parametric vibrations in this way. A more
convenient method for simultaneous limitation and adjustment of the parametric vibration
amplitudes, 1s to insert additional elastic limiters into the structure to create non-linear
elastic ties. This method of amplitude limitation is considered in this paper.

In forming a mathematical model of the vibromachine some assumptions are made:
working head 1s considered as a perfectly rigid body; driving motor as ideal; damping in
elastic supports as viscous and it is also assumed that the elastic supports 3 (see Figure 1) are
not deformed when the machine is in static equilibrium.

Under these assumptions, the differential equation of vibrations of the working head of
the vibromachine can be represented as

d? x dx | dx
m—d—tz——kb(x) 1 - b(1 + pq sin Qt) 1,

L F.(x) + ko(1 + pty sin Qt) = 0, (1)

where x is the co-ordinate of the working head, m is the mass of the working head, b(x) 1s the
non-linear function describing damping in the main and additional elastic supports, b 1s the
damping coefficient of the parametric elastic element, F,(x) 1s the non-linear function
describing the elastic characteristic of the supports, kq 1s the average stifiness coethcient of
the parametric elastic element, u, is the non-dimensional amplitude of the parametric
excitation, Q 1s the frequency of the parametric excitation.

Parametric vibroexciter

k,/2

= k,/2
A+
4 "
L/ k,/2
- _
/

Figure 2. Vibromachine model considered in the dynamic analysis.
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It 1s supposed that coefficient b is directly proportional to the stiffness coefficient k, [17.
Therefore, the internal friction force F,(t) and the elastic force F,(t) of the parametric
clement are described in equation (1) by the similar mathematical expressions
Fy(t) = b(1 + py sin Qt) (dx/dt) and F,(t) = ko(1 + py sin Q1) x.

Functions b(x) and F,(x) in equation (1) can be expressed as

rr'bl(kl +k2)/k1_, x;A_I_ ﬁ
b(x) = { by, —A47 <x<d47 ), (2)
D1(ky + ko) Ky, x< — 47

(ky + ky)x —k, A7, x>=A4" ‘”
F.(x) =/{kqx, — A" <x< A" > (3)
(k1 + ka)/x + k4™, x< — A4

7

where k, is the stiffness coefficient of the main elastic supports, k, is the stiffness coefficient
of the elastic limiters, 4™ and A~ are the initial clearances between the working head and
the elastic limiters.

By the substitution y = x/4~ and 1 = wt = (\/(kl + k,)/m) t, equation (1) and functions
(2, 3) can be transformed into the more manageable dimensionless form

d?y dy . d | |
2 PO B+ psingT) <= + (usingo) v+ £, () = O, @
where
| r’}81(1‘1 + k) / ki, y = AF |
p(y) =< B, — 1 <y<a4*}, (5)
k)81(k1 + ky)/ky, y< —1 J
and
(k*y — (k* — 1)A*, y > A* ﬁ
L) =<, —1<y<da*) (6)
KFy+(k*—1), y< —1

The following notation is used in equations (4-6): n = Q/w, and u = u, ko/(k, + k)
are the dimensionless frequency and amplitude of the parametric excitation,

k* = (ky + ka + ko)/(ky + ko) 1s the dimensionless stiffness coefficient, f = b/ \/ (ky + ko)m

and p; = b,/ \/ (ky + ko)m are the dimensionless damping coefficients, 4* = A" /4~ is the
dimensionless clearance.

Equations (4-6) were solved on an analogue-digital computer system predominantly set
up for the solution of complex non-linear dynamics problems [9, 15]. This computer system
was developed in Riga Technical University and consists of two parts. The integration of
non-linear differential equations is carried out on the high-speed analogue part of the
computer system, but control over the programming of the analogue part and data
processing are executed by the digital part. The methods of mathematical simulation and
the operational principle of the computer system are described in more detail in references
15, 16]. The quantitative estimation of accuracy in analogue-digital simulation was carried
out by the solution of test examples and particular engineering problems [9, 16-18]. The
results of the test simulation have shown close agreement with exact and numerical
solutions for systems with piecewise linear, polynomial and relay elastic-dissipative
characteristic under forced and parametric excitation.
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4. SPECIAL FEATURES OF NON-LINEAR PARAMETRIC OSCILLATIONS

By analyzing solutions of equations (4-6), some peculiarities of non-linear parametric
oscillations are revealed. The more important of them (from the point of view of its
application in vibration engineering) are considered in what follows.

4.1. THE INVARIANCE OF THE PARAMETRIC VIBRATION REGIME TO THE POSSIBLE
DISTURBANCE OF PHASE CO-ORDINATES y, y

As 1s known [2, 3], parametric resonance occurs over wide frequency ranges (regions of
parametric instability) which fall in the vicinity of critical frequencies = 2/s, where s = 1. 2.
3, ... 1s the order of the parametric resonance. As an example, Figure 3 shows the region of
main parametric resonance (s = 1) in the plane of parameters u and n. Within the bounds of
this region, linear theory [2, 3] predicts an unlimited rise of amplitude of parametric
oscillations (even in dissipative system). In the vibromachine under study, limitation of
amplitudes of vibrations is achieved thanks to the presence of additional non-linear elastic
elements with characteristics F,(x) and b(x).

A typical amplitude-frequency characteristic (AFC) of steady-state parametric
oscillations (for the case pu =0-1; k* = 3; f* = B, (ky + ky)/k; = 3; A* = 1: pi = 0-05) 1s
shown in the same Figure 3. The quantities of half-swing of the displacements y, are
projected as amplitudes on this AFC. The resonant curve presented may be divided into the
parts ab and bc.

Part ab of the AFC corresponds to the parametric regimes realized with the system
tuning on the main region of parametric instability. The domains of attraction of
parametric regimes for this case (n = 2) are shown in Figure 4(a). The origin of co-ordinates
(¥ =0, y =0) is a saddle point (trivial solution, corresponding to the unstable rest state of
the system). Two stable focal points S’ and S” correspond to two stable parametric regimes
which are in antiphase and equal in amplitudes. Either parametric regime has its own

1-5 2-0 2-5 3-0
N

Figure 3. The main region of parametric instability and amplitude-frequency characteristic of the steady state
parametric oscillations (for the case u = 0-1; k* = 3; f* = B, (k; + ky)/k, = 3: A* = 1: B = 0:09).
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Figure 4. Diagrams of attraction regions of parametric regimes: (a) for the regimes realized inside the main

region of parametric instability (y = 2); (b) for the regimes realized outside the main region of parametric instability
(n = 25).

domain of attraction. Under some perturbation of phase co-ordinates y, y one of these
two regimes (e.g., regime S’) may lose stability, but in this case instead of the regime S’
the other parametric regime S” 1s always excited. The amplitude and frequency of steady
state parametric oscillations in both cases (regimes S’ and S”) are equal. Therefore, by
considering the requirements of vibration technology, regimes S” and §” may be considered
1dentical.

Another system behaviour 1s observed outside the bounds of the region of parametric
instability — in the regime of non-linear pulling of vibrations (part bc of the AFC). Figure
4(b) shows the domains of attraction of parametric regimes for the case n = 2:5. There are
two domains of initial conditions, which lead the system to stable parametric regimes (stable
focal points S” and S”). All other initial conditions drive the system to the stable trivial
solution y(t) = 0 and y(7) = 0 (stable focal point S,). Such multiplicity of regimes points to
the possibility of breaking down the steady state parametric oscillations by an external
disturbance of phase co-ordinates y, y, resulting in the system reaching the quiescent state
(stable focal point S,), instead of oscillations with finite amplitude (regimes S’, S”).

Thus, from the standpoint of the stability of parametric vibrations and considering the
convenience of their practical realization (start-up under arbitrary initial conditions), 1t 1s
expedient to choose the operation regime of the vibromachine within the bounds of the
region of parametric instability. But under such tuning (part ab of the AFC), the amplitude
of parametric vibrations is sufficiently smaller than on the part bc of the AFC (with other
conditions being equal).

This being so, it may be shown that the numerical values of the coeflicients of
dimensionless equation (4) are not dependent upon magnitudes of clearances A" and 4",
but are set by the ratio A* = A" /A~ Therefore if 4* = const, the solution of equation (4) is
independent of specific values of 4" and 4. Then in view of the relationship x = yA4 ", it
may be argued that simultaneous change of clearances A", 4~ by n-fold causes
a proportional change of amplitude and other parameters of the vibratory regime x(1).

Hence, any vibration amplitude necessary because of technological considerations may
be realized in the vibromachine operating in the region of parametric instability by
adjustment of clearances 4", 4.
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Figure 5. Zones of excitation of unlimited parametric vibrations with (a) varying k*, (4* =1, f; = 0-05);
(b) typical resonance curves for the symmetric system (4* = 1, k* = 1-2, f, = 0-05).

4.2. CONDITIONS FOR AMPLITUDE LIMITATION OF PARAMETRIC VIBRATIONS

The non-linearity of the elastic characteristic is one of the main factors having the ability
to limit the amplitude of parametric vibrations. In the case of smooth elastic non-linearity of
the Duffing type this condition is sufficient [2-4]. But in oscillatory systems with piecewise
linear elastic characteristics studied herein, the limitation of amplitudes occurs only under
specific values of dimensionless stiffness coefficient k* and amplitude u of parametric
excitation. In order to find out the conditions for the limitation of the amplitude of
parametric vibrations, the solutions of equations (4-6) corresponding to symmetric and
one-sided disposition of elastic limiters are analyzed.

Figure 5(a) shows the main region of parametric instability (full line) for the symmetric
system (A4* = 1) on the co-ordinate plane u and 5. If the system 1s linear (k* = 1),
throughout this region, the unlimited rise of amplitude of parametric vibrations occurs. But
in the non-linear system (k* > 1), vibrations with unlimited amplitude are possible only in
specific parts of the instability region (in Figure 5 these parts corresponding to various
values of parameter k* are section-lined). And what is practically important, with the
increase of the parameter k*, the dimensions of zones with unlimited vibrations are
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Figure 6. The influence of damping coefficient ; on the location of a bound between limited and unlimited
parametric vibrations (symmetric system, 4* = 1).
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Figure 7. Zones of excitation of unlimited parametric vibrations (with varying k*) for the system with one-sided
disposition of elastic limiters (4* = oo, fi; = 0-05).

gradually reduced. Therefore, it is possible to choose the parameters k* and u of
a vibromachine, at the design stage, to limit the amplitude of parametric vibrations.

As an example, Figure 5(b) shows the amplitude-frequency characteristics of parametric
vibrations, which have been plotted for k* = 12, f; = 0-05 and two different values of
parameter u (0-14, 0-42). Thus, if k = 0-14, the status of the system (the curve ab 1n Figure
5(a)) corresponds to the stable zone, therefore the amplitude of parametric vibrations 1S
limited. On the contrary, if u = 0-42 the condition of the system is represented by the curve
cd, which cuts the zone of unlimited vibrations (see Figure 35(a)). Therefore the
corresponding AFC 1s unlimited.

The influence of damping on the conditions for limiting parametric vibrations 1s
illustrated by three curves on the co-ordinate plane k* and y, corresponding to the three
different values of damping coefficient f, (Figure 6). Actually, each of these graphs is
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Figure 8. The influence of damping coefficient f, on the location of a bound between limited and unlimited
parametric vibrations (one-sided disposition of elastic limiters, 4* = o0).

a bound between limited and unlimited solutions of equations (4-6) corresponding to the
main region of parametric instability. Specifically, the domain of parameters, which lies over
the graph of k* versus u, corresponds to limited parametric vibrations, and the domain,
which lies under this graph, to unlimited vibrations. As follows from the analysis of these
graphs, with the rise of the damping coefficient f; the domain of limited parametric
solutions also increases.

At the one-sided disposition of elastic limiters (4* = o0), the results are qualitatively the
same and presented 1n Figures 7 and 8.

By using Figures 5-8, it is possible to choose the parameters of the elastic ties to minimize
the amplitude of vibrations in the main region of parametric instability and this avoid
a danger of build-up for a vibromachine.

4.3. SPECTRAL ANALYSIS OF PARAMETRIC VIBRATION REGIMES

Spectral features of steady state parametric vibrations excited within the main region of
parametric instability (S = 1) are illustrated with the AFC for separate harmonic
components y;; (see Figure 9). These AFC have been plotted by taking into consideration
only the three most intensive harmonic components and assuming the parameters ot elastic
non-linearity to be k* = 8§, symmetric and asymmetric location of elastic limiters. Numbers
j/i of harmonic components denote the multiplicity of their frequencies 7;,; relative to the
frequency n of parametric excitation.

It is clear from the AFC presented, that for symmetric locations of the elastic limiters
(A4* = 1), the vibration spectrum has only odd-numbered harmonic components (relative to
the lower harmonic of 1/2 order). Asymmetry introduced into the elastic characteristic
(4* > 1) leads to quantitative and qualitative changes, namely an increase in the slope of the
AFC and the appearance on it of an additional bend point at amplitude y = A* together
with excitation and amplification of even-numbered harmonic components in vibration
spectrum. It is significant, that with the increasing excitation frequency #, the amplification
of even-numbered harmonics occurs when the system oscillates only on two parts (k; and
k, ) of the elastic characteristic.

Overall, the results of the analysis show that specific values in vibration spectrum of the
higher harmonic components y,,, y3,, is extremely small and doesnot exceed 5% relative to
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(b)
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Figure 9. AFC for the separate harmonic components y;,; in the vibration spectrum of the parametric regimes
(u = 0-20; k* = 8): (a) symmetric location of elastic limiters (4* = 1); (b) asymmetric location of elastic limiters
(4* = 3); (c) asymmetric location of elastic limiters (4* = 5).

the amplitude of fundamental harmonic y, ,. Therefore, the oscillations may be considered
as quasi-harmonic pointing to the possibility of pure frequency transformation in
vibromachine with parametric excitation.

4.4. THE POSSIBILITIES OF TRANSFORMATION OF FREQUENCY SPECTRUM OF
PARAMETRIC OSCILLATIONS

It 1s accepted 1n some works [2, 4], that in the main region of parametric instability the
frequency of lower harmonic component in vibration spectrum i1s less by half in comparison
with parametric excitation frequency Q (or approximately equal to the system’s natural
frequency w,). But by the analysis of oscillatory system with asymmetric elastic
characteristic (4* # 1) it was established, that in the main region of parametric instability
(under specific values of systems’ parameters), it 1s possible to excite vibrations, period T,
which 1s greater by several fold in comparison with the natural period Ty = 2n/w,.

As an example, Figure 10(a) shows the domain of excitation of such low-frequency
oscillations (the domain is section-lined) on the co-ordinate plane u and #» (for the case

* =16, 4* = 8 and f; = 0-05). It 1s seen from the diagram presented, that this domain 1s
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Figure 10. Transformation of frequency spectrum of parametric regimes (for the case of k* = 16, A* = 8 and
p1 = 0-05): (a) domain of excitation of low-frequency parametric vibrations (domain is section-lined); (b) the graph
of positive displacement y ™ versus frequency # (for u = 0-35); (c) AFC of predominant harmonic components y;; in
vibration spectrum (for u = 0-353).

sufficiently large and by its width is comparable with the main region of parametric
instabality.

Additionally, the graph of positive dimensionless displacement y* versus frequency 7 is
shown in Figure 10(b), but in Figure 10(c) the AFC of predominant harmonic components
in the vibration spectrum are presented. It is clear from these results, that excitation of
parametric vibrations with high period occurs when displacement y* reaches the clearance
A", ie, on condition that y* ~ A", The frequency spectrum of these oscillations (see
Figure 10(c)) contains the intensive lower harmonic component, the frequency of which is
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one-fourth of the parametric excitation frequency 5. Therefore, 1t can be concluded, that in
the main region of parametric instability the ratio of parametric excitation frequency » and
frequency 5y, of the lower harmonic component may be greater than 2.

The oscillograms of parametric excitation F,(t) = pusin(yt) and corresponding time
response y =f (1) of the low-frequency parametric regime obtained by mathematical
simulation are shown 1n Figure 10(b). It is seen from the comparison of those oscillograms,
that period T; of the parametric regime 1s four time as large as period T, of parametric
excitation.

5. DESIGN PROCEDURE OF MAIN PARAMETERS OF VIBROMACHINE WITH
PARAMETRIC EXCITATION

The excitation of vibrations in a parametric vibromachine is possible only in limited
frequency ranges named as regions of parametric instability. If the vibromachine 1s not
tuned to these regions, the vibrations of the working head and corresponding vibration
technologies are terminated. Of all the possible parametric instability regions, the widest 1s
the main region which 1s selected for realization in the vibromachine.

In accordance with the differential equation (1) with due account of equations (2, 3), the
possibilities of excitation of the main parametric resonance are dependent on the
parameters m, by, Q, kq, ko, k,, A and u, of vibromachine. Some of these parameters may be
determined from structural considerations, but others are specified by technological
purposes of the vibromachine. For example, it is advisable to choose the excitation
frequency {2 on the condition that the machine’s operating regime corresponds to the
middle of the main region of parametric instability (n = Q/w, = 2). Thanks to this, the
probability of break-down of the parametric regime due to inevitable random fluctuation of
some system parameters (1, m) will be minimized.

The stiffiness coefficient k, of elastic limiters has to be chosen from the condition of
limitedness of amplitude of parametric vibrations (with the use of diagrams presented in
Figures 5-8). The clearance 4 1s determined from the on necessary amplitude of steady state
parametric vibrations. Finally, the mass m of the working head is specified from structural
and technological considerations, but the stiffness coefficient k; of the elastic supports by
considering the given static loading of the vibromachine.

The last two parameters (the average stiffness coefficient k, and the non-dimensional
amplitude u of the parametric excitation) are the main factors which specify the conditions
for excitation of parametric vibrations. Therefore, the choice of parameters k, and u 1s of
prime importance.

The equation for determination of bounds of the main region of parametric instability

1s [2]

n=2/1—05/u*—4p3. (7)

After manipulation with equation (7) the formulas for determination of parameters k, and
[ are

ko =moi —k;,  u=025mw? /641 + B3) — [8 — (4Q/Q)*]?, (8, 9)

where 4€2 1s the width of the region of parametric instability and w, = Q/2.
Using the design procedure proposed, it 1s possible to choose the optimum parameters of
parametric vibromachine.
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6. CONCLUSIONS

The results presented in this paper form a theoretical basis for the development of a new

generation of technological vibromachines operating on parametric resonance. The main
advantages of parametric vibromachines (in comparison with traditional ones operating in
regimes of forced or self-sustained vibrations) may be formulated as follows.

10.

11.

12.

13.

14,

15.

(1) Exponential rise of amplitude of parametric vibrations makes it favourable to use the

parametric excitation in vibromachines operating with frequent start-ups and shut-
downs (e.g., in weighting vibromachines).

(2) The vibration spectrum of parametric regimes is close to those for the monoharmonic

regim (the relative value of higher harmonic components does not exceed 5-10%). It
1s thus possible to realize almost “pure” frequency transformation in vibromachines
with parametric excitation.

(3) Thenvarnance of steady state parametric vibrations to possible disturbances of phase

co-ordinates creates the absolute stability of the parametric regime in a vibromachine.
[t 1s especially important for the vibromachines operating under frequent external
stimuli and 1impacts.

(4) The amplitude of steady state parametric vibrations may be changed over a wide

range by the adjustment of clearances 4", 4~ between the elastic limiters and the
working head of vibromachines.
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