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Abstract ;

This paper considers the parallel simulation of dynamic systems, where continuous controlled
processes are described by ordinary differential equations, and dynamic systems with distributed
paramelers, where processes are described by partial differential equations. The concepts of parallel
simulation environment with integration of hardware, system software and simulation software which
supports all stages of model constructing and simulation is presented Some parallel algorithms are
described.

1. Dynamic systems simulation facilities: main requirements

Simulation is the most effective and frequently nsed method of checking project solutions
efficiency for systems and objects of real complexity. Classifying dynamic systems (DS) as simulated
object two most important types of systems can be distinguished: these are dynamic systems with
lumped parameters (DSLP) and dynamic systems with distributed parameters (DSDP).

DSLP are systems described by ordinary differential equations (ODE), algebraic equations (AE)
and logical functions (LF). ODE characterise the progress of the processes, AE express the physical
interconnections between their parameters and LF can reflect structure variables and interrelations
between parameters which are essential for the control of DSLP. Real DSLP are multidimensional
{(hundreds or thousands of dynamic parameters) and characterised by the following parameters: non-
linear static characteristics, hierarchy of controlling influences and sources of energy, strong
interdependence of the process parameters. In some domains these systems have variable of structure
dependant on time or process parameters.

DSDP are systems described by partial differential equations (PDE) with corresponding boundary
conditions, as well as by ODE, AE and LF. DSLP and DSDP function like complete systems in many
domains. In practical researches and design of dynamic systems objects with distributed parameters
can be approximated by the equivalent objects with lumped parameters.

Formal description of real complexity dynamic systems consist of a topology parl and a system of
equations. DSLP topology is depicted by graphs (dynamic network objects of different physical
nature), technological schemes, block diagrams (control systems of dynamic objects). DSDP topology
can be similar to DSLP topology and some of its components (graph branches, blocks of technological
schemes and block diagrams) are objects with distributed parameters of a simple geometrical form,
e.g. one-dimensional (pipelines, long lines), two-dimensional (filter surface), three-dimensional
(reactors, power facilities). The approximation of continuous environments and their discretization by
equivalent analogies generate DSDP topology.

The mamn requirements to dynamic system simulation facilities are as follows:

1. User-friendliness at all stages of design and application of DS models.

2. The ability to simulate DSLP and DSDP of real complexity with maximum regard to real
properties of simulated processes.

3. The ability to solve simulation problems of DS in real or accelerated time rate.

4. The presence of high level simulation language. It is very important to have the
possibility of model deseription using minimum amount of information.

5. The presence of dialogue sysiem supporting active user access to resources of the
simulation facilities at all stages of design and use of models.

6. The ability of integration with computer-aided design systems (CAD, CASE).
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7. Highly developed model testing system.

2. Massive parallel simulation environment

Massive parallel simulation environment (MPSE) for dynamic systemns is & combination of
hardware, system software and simulation software, which supports all stages of model building and
simulation and meets the above requirements.

The hardware includes parallel systems of SIMD and MIMD architectures accessed by users via
network, The system software consists of operating systems, parallel program languages and their
translators, network software intended to support remote users, organising input-output and solving
real time problems. These components are available in the existing SIMD and MIMD systems. The
paralle] program languages Parallaxis and Modula-P were designed at IPVR [56,7].

The simulation software included in the MPSE should be developed by means of the existing
software and based on the experience of creation of simulation environments [1,4,10]. It should
include the DSLP and DSDP parallel simulation software, the library of parallel algorithms and the
programs of numerical methods, software for supporting the flexible access to all the facilities
mentioned above and visualisation of simulation results.

3. Multiprocessor systems and parallel algorithms

The difficulty of using multiprocessor systems consists not only in the limitation of processor
interconnections. High performance can be achieved only when all processors or most of them are
continuously loaded. But the algorithm of problem solving due to its own structure can support but
frequently not the continuous load of large amount of processors despite of interconnection network
structure. There are many calculation methods, which can not be effectively realised for whatever
multiprocessor computer system. Hence, the structure of calenlation methods should correspond to the
computer system architecture. Otherwise, the required performance might not be achieved.

Below the SIMD-oriented algorithms, which can use more completely the potential parallelism
difference schemes posses, are described which approximate boundary problems for partial differential
cquation. The highest performance of a SIMD parallel processor is achieved when it is used in matrix
calculations. As is known, many algorithms require the same operations which are often repeated. If it
15 possible to assign one calculation node to one processor then all nodes can be calculated
concurrently.

The efficiency of a parallel alporithm can be estimaied by means of many criteria. The most
popular criteria are acceleration and performance. Let n be the quantity of the problem parameters and
() be the calculation time of the parallel algorithm using a paraliel computer, which consists of p>/
processors and T;(n) be the calculation time of «the best» sequential algorithm. Then

I, (n)
L) T () (1)
s,()
denotes the acceleration, and E = <1 (2)
P

denotes the performance of a parallel algorithm. One of the aims of the parallel algorithm
development is to achieve the maximum acceleration (S,-p). However, the maximum acceleration can
be achieved only for simple problems. The main factors decreasing the acceleration are the absence of
maxunum parallelism in the algorithm and time wasting for data exchange between processors.
Begmning to discuss numerical algorithms for solving the problems of mathematical physics they will
be estimated taking into account the two factors mentioned above. Firstly, the algorithms with
- maximum parallelism are discussed, then time wasting for data exchange is estimated for SIMD
realisation on MasPar-1216 system.
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4. Algorithms for solving boundary problems of parabolic eguations

4.1.  Algorithms for numerical solving of one-dimensional boundary problems

The numerical solution of a one-drmensional parabolic problem

au Fu
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U(x,0) = p(x) ; U(0,0) = y(2) ; w(l.1) = 1)

using the r.xplicit' scheme is expressed by the following equations which allow to get the solution
sequentially for the next time level

vi=g¢, :n=0,N+1;
k+l (4}
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where v; = ,v_fm =& o' =a’t/h; 1,h me steps of the grid. Obviously, this algorithm
has maximum parallelism at each time level: Sy(N) = N. And it is easy to realise on SIMD processors
because the algorithm requires only two data exchanges, which are accomplished between two
neighbour processor elements, at each time level. To realise this algorithm N processors are required.
Its performance takes into account the dependence upon the calculation of complexity of functions
f,y,E and equals Ex{N)=0.75 at worst for homogeneous equations and homogeneous conditions.
However, the application of this algorithm is restricted by the fact that explicit difference scheme is
unalterable only when 7 < a’r/ k%

Approximation of problem (3) by the implicit scheme is expressed in the following equation
system

k

Vo =0,
VEI;-H = Ij,:‘l’hl, {5
o’ v —(1+20 W s o?vi = W ok 1N, }
'r‘:,-“ = §k+l.

Using sequential computers this problem is solved by Progonka method which is not parallel, thus
it is not efficient to realise on parallel computers. There are some effective parallel algorithms of
solving three-diagonal linear equation systems. One of them is briefly discussed below.

Omutting for short the superscript indexes in (5), assuming for convenience N-/=2 and denoting
the nght part with & [, ¥,. £ the following formulae can be written:

ﬂanVn—Z be an*lvn—l + y.ﬁr—lvﬂ = gn-].

an-] '-'-ﬂ'"v" + ynvn-»-!l = gn {6}

ﬁhﬂvrr o an+lvn+1 +?n+tvn+2 = gn+l y B = E,N— l

If unknowns v,,.; and v,,.; are excluded and three neighbours are grouped again then we obtain

(1) (1} (1) 1)
ﬁp-z"’n—t _an—zuﬂ—Z + :Fm—l ¢ gn—i L]
(1}, (1) (1) eobplilh
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where
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In (7) it should be assumed, that v,=0 for all /<0 and j>N+I in order to be able to exclude the
unknown variables simultaneously in each group. It is obvious, that the Process can go on recursively
until each equation consists of one variable only after g= Jog,(N-1) steps. At the last (g+1)-th step all
unknown variables can be found concurrently too.

The described method of cyclic reduction was previously used on sequential computers, since it has
less amount of scalar arithmetical operations and, hence, it is the best sequential algorithm. If the
factors of equations (7) are calculated at each step concurrently at N-J processors of a SIMD-system,
and then their values are sent to the appropriate processors, then the solution of the equation system
(6) will require ¢ + / step. At each step, except for the last one, each processor should send four
values. We shall designate as I,the quantity of operations of factors required for the calculation of the
system (7) on a sequential computer, as f, the time of the parallel exchange in a SIMD-structure, as Iy
the time of the calculation of unknown x; from the equation similar to (7), which is obtained at the first
step in the method of sequential cyclic reduction (SERICR), then the acceleration of the parallel
cyclic reduction algorithm (PARACR) will be equal to

¢ iz, y
S, (N) = N( s +1,) ]‘_:'Ezzin'* ~o( N
(rf +1f )log, N log, N

If t, denotes the average time necessary for one arithmetic operation, then the algorithm efficiency

equals E, (N) = (log, N)™' for the problem under consideration (6).

). (8)

4.2. Concurrent solution algorithms of multidimensional parabolic boundary problems

Explicit and implicit methods are usually used for solving multidimensional parabolic boundary
problems. Explicit difference schemes for multidimensional parabolic problems, as in the case of one-
dimensional problem, have maximum possible natural parallelism. However, because of conditional
stability of such difference schemes, their use is not always possible. At present, there are no efficient
parallel direct methods of solving implicit difference equation systems.

Difference schemes of spliting offer a means of parallelizing. For example, for the two-
dimensional parabolic problem

E a2(=m+a——] + f(x,,1) (9)

with appropriate initial and boundary conditions local one-dimensional scheme of splitting is of the
following form

— k o o
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Here the solution at each time level consists of two stages: finding intermediate values ¥, > and

then calculating values V5" at the next time level. At each of these stages difference equations are

three diagonal systems of equations, which, as in the case of one-dimensional problem, can be solved
by the cyclic reduction method. If for simplification of estimations it is assumed, that x, y area for the
problem (9) is a square, then the parallelism degree of this algorithm being equal to N the PARACR
method is the most efficient. The acceleration of this method is
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If only N processors are used, then each equation system can be solved by the PARACR method,
using N processors, and then N such systems can be solved sequentially, or each system is solved on
one processor by the SERICR method, and all NV systems are solved concurrently, then the acceleration

estimation 15 as follows

Sy(N?) prmr = (N /'log, N); Sy(N?),,, = O(N), (12)

Iese estimations testify to advantages of the SERICR method. Similar evaluations are also
obtained for other difference schemes of sphitting. In the same way it is possible to consider and get
estimations for the space parabolic equation.

4.3. Concurrent solution algorithms of elliptic boundary problems

The parallelism estimations of algonithms are done for a model problem, approximating Poisson’s
cquation
&;‘+@Tu=}{x,y,‘l; O0<x=<], O<p<l (13)

the corresponding difference equation of which is of the followmg form

v + v.ll.l o 4vu + v-.n—l +vuu"'l = hzf._pn ;ﬂ,ﬂ' = B,N {14J
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If the first boundary problem is solved, then function u and, hence, grid function v are defined at
the boundary. Thus, a linear system of N’ equations is obtained, the matrix of which is diagonally
rarefied and contains only five non-zero diagonals. At present, there are no efficient direct methods of
solving similar systems of equations. For large values of N such systems are solved by iterative
methods, as a rule. The analysis of the solution algonithms of difference equations, allows to answer
the following questions:

« performance and possibilities of parallelizing;

 cstimation of parallel algorithms given the characteristic correlation between the number of
unknowns and the number of processor elements (PE).

Proceeding from the obtained estimations of efficiency of parallel algorithms we have chosen the
following parallel algorithms for realisation on SIMD system MasPar: parallel method of upper
relaxation, method of variable directions and multigrid Fedorenko method. The first two methods are
well known in contrast to the third one, therefore we shall present a brief description of this method.
To reduce the norm of the initial error /aN times this method needs O(N°) arithmetical operations. It is
known, that the fastest method of Duglas-Rechford requires Of(InN)N°) operations. Limits of
applicability of multigrid method are almost the same, as of the elementary method of establishment.
The multigrid method was intended for application at a one-processor computer, where nodes of the
grid area are processed sequentially. At the same time it is easy to parallelize and it is effective to
realise on SIMD systems. Its implementation is especially simple for the case, when the number of PE
is sufficient for processing of all nodes of a small-sized grid, ie. p=N°. When p < N it is not difficult
to construct a block sequential-parallel algorithm on a small-sized grid and a parallel algorithm on a
large grid. -

The multigrid method can be modified for the realisation on SIMD systems. For simplification we
shall restrict ourselves to the case, when two grids are used — a small onc and a large one. When
calculating corrections in nodes of the large grid, it is also possible to calculate corrections in other
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internal nodes of the small grid, using the pattern of the large grid except for boundary nodes. The
values of commections in boundary nodes can be determined by interpolation. Besides, more accurate
initial approximation for the small grid can be obtained, using approximate solutions on a sequence of
condensing grids. These changes of the algorithm allow to reduce the total number of parallel
iterations, which are necessary for solving a problem with given accuracy, as well as to increase the
degree of parallelism.

4.4. Library of programs for parallel simulation of DSDP

The library includes procedures of all the above considered numerical methods, as well as various
auxiliary programs, For example, problem comectness checking, scanning the area, where the solution
is being found, input/output procedures, interpreter of symbolic expressions for input of functions and
others. The library allows to carry out the numerical solution of two-dimensional parabolic and elliptic
boundary problems in the area, representing closed multiangles, parts of border of which being
segments of straight lines and arches of circles. The boundary conditions in each section of the border
are set in the form of conditions of the third kind. Both rather simple methods (such as Jacoby’s
method, Seidel’s method, method of upper relaxation) and complex methods (multigrid, extrapolation,
as well as Schwarz’ method and area partition. The programs are made in parallel programming
language Parallaxis-3 for operating system Linux, some auxiliary procedures are written in C ++,

5. Summary

Research and development of main algorithms for the simulation of is carried out in accordance
with the stated concepts. The models are realised in the parallel programming language Parallaxis [6],
which allows to conduct experimental researches of parallel algorithms both on the basis of a personal
computer and on SIMD system MasPar, The parallel models created are used for the development of
ventilation control systems for coal mines. The library, which is the main part of the parallel models
subsystem of the DNO control system, is created. The results stated above are obtained by the authors
within the framework of cooperation between Donetsk State Technical University and University of
Stuttgart (2, 3, 4, 10].
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