УДК 51 (071)

Л.П. Мироненко (канд. физ.-мат. наук, доц.)

Донецкий национальный технический университет, Донецк кафедра высшей математики им. проф. В.В.Пака E-mail: mironenko.leon@yandex.ua

ГИПЕРГЕОМЕТРИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ И ПРЕДЕЛЬНАЯ ТЕОРЕМА

Целью статьи является вывод предельной формулы гипергеометрического распределения, оценка погрешности асимптотического разложения. При этом, показано, что гиперраспределение переходит в аналог биномиального распределения. Установлены условия перехода, получены соответствующие оценки, и расчеты сравниваются с теорией.

Ключевые слова: вероятность, распределение, испытания, бином, предельные теоремы, случайность, независимость испытаний, нормировка.

Введение

В основе многих расчетов компьютерных технологий используются законы и язык теории вероятностей. Особенно используются различные функции распределения, позволяющие оценивать вероятности различных процессов в реальных системах, накопление систематических ошибок, вероятности сбоев и т.д.. Гипергеометрическое распределение, особенно его предельные формы, относится к числу часто используемых в расчетах. Однако расчет систем с большим числом параметров вызывает затруднения даже при использовании компьютеров с мощными ресурсами. Возникает необходимость в приближенных, но эффективных формулах.

Гипергеометрическое распределение (в дальнейшем гипер-распределение) относится к одному из классических распределений теории вероятностей и является пробным камнем для вывода и введения других распределений. Это распределение содержит биномиальные коэффициенты, которые трудно вычислять при больших значениях числа N (N > 100) — количества объектов в рассматриваемой системе. Возникает необходимость в предельных теоремах.

1. Определение гипер-распределения и постановка задачи

Напомним классическую схему, как возникает гипергеометрическое распределение. Для этого рассмотрим задачу. Предположим, что в урне N шаров, среди которых n белых u N-n черных. Наугад из урны взято k шаров. Найти вероятность $P\{\xi=r\}$ случайного события ξ , состоящего в том, что из k наугад взятых шаров, окажется r белых (u, oче-видно, что <math>k-n — черных).

Число всех возможных случаев, наблюдаемых в эксперименте, равно $C_N^k = \frac{N!}{k!(N-k)!}$ — число способов, которыми можно выбрать k шаров из партии N шаров, $N!=N\cdot(N-1)\cdot...\cdot 2\cdot 1$. Среди k шаров белых r можно выбрать C_n^r способами и черных k-r шаров C_{N-n}^{k-r} способами. Согласно основному принципу комбинаторики число событий, благоприятствующих событию $\xi=r$ будет равно $C_n^r\cdot C_{N-n}^{k-r}$. Поэтому искомая вероятность равна

$$P\{\xi = r\} = \frac{1}{N} \frac{C_n^r C_{N-n}^{k-r}}{C_N^k} , \ 0 \le r \le \min(n, k) , \tag{1}$$

где C_k^r — биномиальные коэффициенты, равные $C_k^r = \frac{k!}{r!(k-r)!}$, 1/N — нормировочный множитель. Этот набор вероятностей $P\{\xi=r\}$ называется гипергеометрическим распределением. При решении подобных задач предлагаем использовать схему (Рис.1)

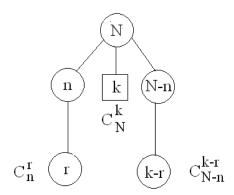


Рисунок 1 — Схема определения гипер-распределения

Условие нормировки вероятности распределения (1) имеет вид

$$\sum_{r=0}^{\min\{k,n\}} P\{\xi=r\} = \frac{1}{N} \sum_{r=0}^{\min\{k,n\}} \frac{C_n^r C_{N-n}^{k-r}}{C_N^k} = 1.$$

Априори, из постановки и решения задачи, приводящей к распределению (1), ясно, что возможны, по крайней мере, два предельных случая $N \to \infty$, k << N — аналог предельной локальной теоремы Муавра-Лапласа в схеме независимых испытаний Бернулли [1]. Второй предельный случай отвечает $N \to \infty$, k << N и $p_N = n/N \to 0$ — аналог предельной теоремы Пуассона [1–3]. В данной работе рассматривается только первый предельный случай, который будем называть *предельной теоремой гипер-распредения*.

2. Предельная теорема гипер-распределения

Если в гипергеометрическом распределении (1) выполняются условия N >> 1, k << N, то имеет место формула, аналогичная формуле Бернулли в схеме независимых испытаний

$$P\{\xi = r\} = C_k^r \left(\frac{n}{N}\right)^r \left(1 - \frac{n}{N}\right)^{k-r}, \quad 0 \le r \le \min(n, k).$$
 (2)

<u>Доказательство</u>. Преобразуем выражение (1), подставив в явном виде биномиальные коэффициенты

$$P\{\xi = r\} = \frac{C_{n}^{r}C_{N-n}^{k-r}}{C_{N}^{k}} = C_{k}^{r}\frac{C_{n}^{r}C_{N-n}^{k-r}}{C_{k}^{r}C_{N}^{k}} = C_{k}^{r}\frac{r!(k-r)!}{k!} \cdot \frac{n!}{r!(n-r)!} \cdot \frac{(N-n)!}{(k-r)!(N-n-(k-r))!} \cdot \frac{k!(N-k)!}{N!} = C_{k}^{r}\cdot \frac{n!}{(n-r)!} \cdot \frac{(N-n)!}{(N-n-(k-r))!} \cdot \frac{(N-k)!}{N!}.$$

Подставим формулу Стирлинга $n! = \sqrt{2\pi n} n^n e^{-n} e^{\varphi(n)}, \varphi(n) < 1/12n$ [4]. После несложных преобразований, получим

$$P\{\xi = r\} = C_k^r A_N \cdot B_N,$$

$$A_N = \sqrt{\frac{n}{(n-r)} \frac{(N-n)}{(N-n-(k-r))} \frac{(N-k)}{N}},$$
(3)

$$B_{N} = \frac{n^{n}}{(n-r)^{(n-r)}} \cdot \frac{(N-n)^{(N-n)}}{(N-n-(k-r))^{(N-n-(k-r))}} \cdot \frac{(N-k)^{(N-k)}}{N^{N}}.$$
 (4)

Преобразуем выражение A_N , разлагая его по степеням 1/N (ПРИЛОЖЕНИЕ 1 (П2))

$$A_{N} = \sqrt{1 + \delta_{1/N} + \delta_{1/N^{2}}}, \ \delta_{1/N} = \frac{rq_{N}}{Np_{N}}, \ \delta_{1/N^{2}} = \delta_{1/N}^{2} + \frac{(n-r)(k-r)}{N^{2}},$$
 (5)

где $p_N = n/N$, $q_N = 1 - n/N$.

Преобразуем B_N (ПРИЛОЖЕНИЕ 2 (П6))

$$B_{N} = p_{N}^{r} q_{N}^{k-r} \left(1 + \Delta_{1/N} + \Delta_{1/N^{2}} \right),$$

$$\Delta_{1/N} = \frac{k^{2} p_{N} q_{N} - (k-r)^{2} p_{N} - r^{2} q_{N}}{2N p_{N} q_{N}},$$

$$\Delta_{1/N^{2}} = \frac{(k^{2} p_{N} q_{N} - (k-r)^{2} p_{N} - r^{2} q_{N})^{2}}{4N^{2} p_{N}^{2} q_{N}^{2}} + \frac{k^{3} p_{N}^{2} q_{N}^{2} - (k-r)^{3} p_{N}^{2} - r^{3} q_{N}^{2}}{6N^{2} p_{N}^{2} q_{N}^{2}}.$$
(6)

Поскольку $\max r = k$, то имеют место оценки

$$\Delta_{1/N} \leq \frac{k^2 q_N}{2Np_N} = \frac{k}{2} \varepsilon, \ \Delta_{1/N^2} \leq \frac{k(2p_N + 5)}{12} \varepsilon^2, \ \varepsilon = \frac{kq_N}{Np_N} << 1.$$

При N >> 1, k << N гипер-распределение (1) переходит в аналог формулы Бернулли (2) с вероятностями (частотами) $p_N = n/N$, $q_N = 1 - n/N$. Точность приближения порядка 1/N. Поправки по степеням $1/N^m$, m = 1,2,3 приведены в приложениях 1 и 2 и формулах (5) и (6).

Распределение (2) связано с распределением Бернулли следующим образом. Если существует предел $p = \lim_{N \to \infty} n/N$, то существует предел $B = \lim_{N \to \infty} B_N = p^r q^{k-r}$ и распределение (1) и его предельная форма (2) переходят в биномиальный закон распределения (распределение Бернулли в схеме независимых испытаний Бернулли)

$$P\{\xi = r\} = C_k^r p^r q^{k-r} \tag{7}$$

с вероятностями р и q.

3. Альтернативный вывод предельной теоремы

В схеме независимых испытаний Бернулли рассматриваются независимые испытания с с двумя исходами — успех У с вероятностью p или неудача Н с вероятностью q, p+q=1 (термины «успех» и «неудача» употребляется условно). Вероятности p и q определены условиями задачи.

Схему Бернулли можно перенести на задачу, приводящую к гипер-распределению, если вероятности p и q заменить частотами $v_N = n/N$ — вытащить белый шар, а черный $1-v_N = 1-n/N$. Очевидно, что обе теории совпадают, если существует конечный предел $\lim v_N$ и этот предел равен p, $0 \le p \le 1$.

Предположим, что произведено k испытаний, в которых зафиксировано число $\xi=r$ успехов. Например, при k=2 пространство элементарных событий $\Omega=\{YY,YH,HY,HH\}$. Поскольку испытания независимые, то частоты элементарных исходов следует определить так: $YY-(v_N)^2$; $YH-v_N(1-v_N)$, $HY-(1-v_N)v_N$, $HH-(1-v_N)^2$ [5–6]. В общем случае, пространство Ω состоит из 2^k наборов длины k, состоящих из букв Y и H. частота отдельного набора длины k равна $(v_N)^r(1-v_N)^{k-r}$, если в набор входит r букв Y; число наборов C_k^r . Поэтому

$$P_n(r) = P\{\xi = r\} = C_k^r (v_N)^r (1 - v_N)^{k-r}, r = 0,1,2,...,k$$

что совпадает с формулой (2).

Данный вывод формулы (2) является строгим, потому, что приведен для частот, в которых уже заложено приближение, которое определено формулами (3) - (5). Более точные расчеты приведены в предыдущем пункте в доказательстве теоремы.

4. Сравнение теории с расчетами

Ниже приведены расчеты по точной формуле распределения (1) и по предельной формуле (2) при N=100>>1, k=10<< N в широком спектре изменения числа $10 \le n \le 90$ (Рис. 2). На следующем рисунке (Рис. 3) показана «динамика» приближения кривых 1 и 2 с увеличением объема выборки $10 \le k \le 50$.

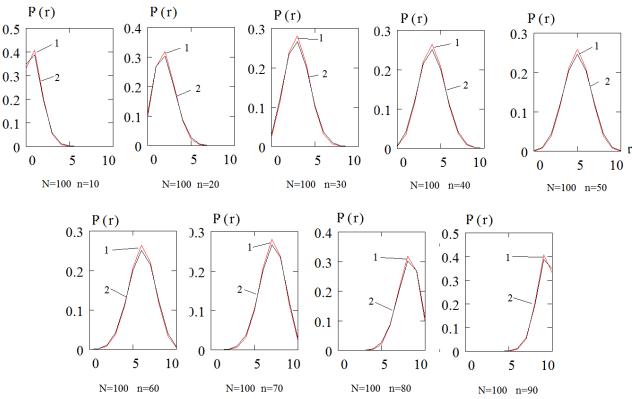


Рисунок 2 — Сравнение расчетов по формуле гипер-распределения (1) (кривые обозначены 1) и по асимптотической формуле (2) (кривые обозначены 2) при условии k << N

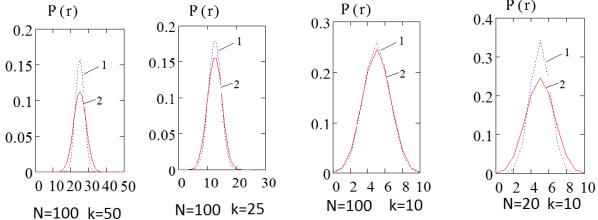


Рисунок 3 — Сравнение расчетов по формуле гипер-распределения (1) (кривые 1) и по асимптотической формуле (2) (кривые 2) при различных соотношениях между k и N, n/N=0.5.

Как видно из графиков, полученная формула (2) хорошо согласуется с формулой (1) при k << N > 25 в широком спектре изменения числа $10 \le n \le 90$. В самом деле, нижняя граница N, как показывают расчеты, меньше, порядка $N \approx 20$. При N < 10 лучше формулой (2) не пользоваться.

<u>ПРИЛОЖЕНИЕ 1</u> Разложение функции A_N по степеням 1/N .

Вынесем в выражении (3) для A_N в числителе и знаменателе N за скобки и используем обозначение $n=Np_N$

$$A_{N} = \sqrt{\left(1 - \frac{n}{N}\right)\left(1 - \frac{k}{N}\right)\left(1 - \frac{r}{n}\right)^{-1}\left(1 - \frac{n}{N} - \frac{k - r}{N}\right)^{-1}} = \sqrt{\left(1 - \frac{n}{N}\right)\left(1 - \frac{k}{N}\right)\left(1 - \frac{r}{Np}\right)^{-1}\left(1 - \frac{n + k - r}{N}\right)^{-1}}.$$
(II1)

Произведем разложение этой функции по степеням $1/N\,$ до членов порядка $1/N^2\,$

$$\left(1 - \frac{n}{N}\right)\left(1 - \frac{k}{N}\right) = 1 - \frac{n}{N} - \frac{k}{N} + \frac{nk}{N^2}, \left(1 - \frac{r}{Np}\right)^{-1} = 1 + \frac{r}{Np} + \frac{r^2}{N^2p^2},$$

$$\left(1 - \frac{n + k - r}{N}\right)^{-1} = 1 + \frac{n + k - r}{N} + \frac{(n + k - r)^2}{N^2}.$$

Здесь использовано разложение $(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + ...$, при $\alpha = -1$ имеем $(1+x)^{-1} = 1 - x + x^2 + ...$ тогда, выражение (П1) для A_N^2 имеет вид

$$A_N^2 = \left(1 - \frac{n+k}{N} + \frac{nk}{N^2}\right) \left(1 + \frac{r}{Np} + \frac{r^2}{N^2p^2}\right) \left(1 + \frac{n+k-r}{N} + \frac{(n+k-r)^2}{N^2}\right) = 1 + \frac{r(1-p)}{Np} + \frac{r^2(1-p)}{N^2p^2} + \frac{(n-r)(k-r)}{N^2}.$$

После простых преобразований, получим

$$A_{N} = \sqrt{1 + \delta_{1/N} + \delta_{1/N^{2}}},$$

$$\delta_{1/N} = \frac{r(1 - p_{N})}{Np_{N}}, \ \delta_{1/N^{2}} = \frac{r^{2}(1 - p_{N})}{N^{2}p_{N}^{2}} + \frac{(n - r)(k - r)}{N^{2}}.$$
(II2)

Проверим предельный случай $p_N=1 \to n=N$, тогда r=k и $\delta_{1/N}=_{1/N^2}=0$. В другом предельном случае $p_N=0 \to n=0 \Rightarrow r=0$ также $\delta_{1/N}=_{1/N^2}=0$.

Поскольку $\max r = k$, то имеют место оценки $\delta_{\text{I/N}} \leq \frac{kq_{N}}{Np_{N}} = \varepsilon$, $\delta_{\text{I/N}}^{2} \leq \varepsilon^{2}$.

<u>ПРИЛОЖЕНИЕ 2</u>. Разложение функции B_N по степеням 1/N

Подставим в функцию B_N (4) выражение

$$\frac{n^n}{(n-r)^{(n-r)}} = n^r \left(1 - \frac{r}{n}\right)^{-(n-r)},\tag{II3}$$

и аналогичные выражения в (4) для подобных членов в функции $B_{\scriptscriptstyle N}$, получим

$$B_{N} = \frac{n^{r}(N-n)^{(k-r)}}{N^{k}} \left(1 - \frac{r}{n}\right)^{-(n-r)} \left(1 - \frac{k-r}{N-n}\right)^{-(N-n-(k-r))} \left(1 - \frac{k}{N}\right)^{(N-k)}.$$

Еще раз применим равенство (Π 3) к первому множителю в выражении B_{N} , получим

$$B_{N} = \left(\frac{n}{N}\right)^{r} \left(1 - \frac{n}{N}\right)^{(k-r)} \left(1 - \frac{r}{n}\right)^{-(n-r)} \left(1 - \frac{k-r}{N-n}\right)^{-(N-n-(k-r))} \left(1 - \frac{k}{N}\right)^{(N-k)}. \tag{\Pi4}$$

Рассмотрим первый член и используем стандартное разложение $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots$

$$\left(1 - \frac{r}{n}\right)^{-(n-r)} = \exp\ln\left(1 - \frac{r}{n}\right)^{-(n-r)} = -(n-r)\ln\left(1 - \frac{r}{n}\right) =$$

$$= -(n-r)\left(-\frac{r}{n} - \frac{r^2}{2n^2} - \frac{r^3}{3n^3}\right) = r - \frac{r^2}{2n} - \frac{r^3}{6n^2} - \frac{r^4}{3n^3}.$$

Аналогично,

$$\left(1 - \frac{k - r}{N - n}\right)^{-(N - n - (k - r))} = k - r - \frac{(k - r)^2}{2(N - n)} - \frac{(k - r)^3}{6(N - n)^2} - \frac{(k - r)^4}{3(N - n)^3},$$

$$\left(1 - \frac{k}{N}\right)^{(N - k)} = -k + \frac{k^2}{2N} + \frac{k^3}{6N^2} + \frac{k^4}{3N^3}.$$

Подставим эти выражения в B_N , получим

$$B = p_{N}^{r} q^{(k-r)} \exp \{ \Delta_{1/N} + \Delta_{1/N^{2}} + \Delta_{1/N^{3}} \},$$

$$\Delta_{1/N} = \frac{k^{2} p_{N} q_{N} - r^{2} q_{N} - (k-r)^{2} p_{N}}{2N p_{N} q_{N}},$$

$$\Delta_{1/N^{2}} = \frac{k^{3} p_{N}^{2} q_{N}^{2} - r^{3} q_{N}^{2} - (k-r)^{3} p_{N}^{2}}{6N^{2} p_{N}^{2} q_{N}^{2}},$$

$$\Delta_{1/N^{3}} = \frac{k^{4} p_{N}^{3} q_{N}^{3} - r^{4} q_{N}^{3} - (k-r)^{4} p_{N}^{3}}{3N^{3} p_{N}^{3} q_{N}^{3}}.$$

$$(\Pi 5)$$

Проверим предельный случай $p_{\scriptscriptstyle N}=1 \to n=N$, тогда r=k и $\Delta_{\scriptscriptstyle 1/N}=\Delta_{\scriptscriptstyle 1/N^2}=\Delta_{\scriptscriptstyle 1/N^3}=0$. В другом предельном случае $p_{\scriptscriptstyle N}=0 \to n=0 \Rightarrow r=0$ также $\Delta_{\scriptscriptstyle 1/N}=\Delta_{\scriptscriptstyle 1/N^2}=\Delta_{\scriptscriptstyle 1/N^3}=0$.

Поскольку $\max r = k$, то имеют место оценки

$$\Delta_{1/N} \leq \frac{1}{2} \frac{k^2 q_N}{N p_N} = \frac{k}{2} \varepsilon, \ \Delta_{1/N^2} \leq \frac{k}{6} \varepsilon^2, \ \Delta_{1/N^3} \leq \frac{k}{3} \varepsilon^3, \ \varepsilon = \frac{k q_N}{N p_N} << 1.$$

Для оценки погрешности используем стандартное разложение

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, \quad x = \Delta_1 + \Delta_2,$$

получим Δ , в виде (6).

В завершении приведем оценку погрешности формулы (2), ограничиваясь членами 1/N

$$P\{\xi = r\} = C_k^r \left(\frac{n}{N}\right)^r \left(1 - \frac{n}{N}\right)^{k-r} (1 + \delta),$$

$$\delta = \Delta_{1/N} + \delta_{1/N} = \frac{k^2 pq - r^2q - (k - r)^2 p}{2Npq} + \frac{r(1 - p)}{Np},$$

или

$$\delta \le \frac{k(k+2)q}{2Np}$$

Выводы

- 1. Получена предельная (асимптотическая) формула (2) гипергеометрического распределения (1), которая может быть использована при $N>20,\ k<< N$, давая абсолютную погрешность порядка 5%.
- 2. Предложен простой и строгий вывод предельной теоремы (2), основанный на схеме независимых испытаний Бернулли с использованием частоты появления событий. Несмотря на различия в постановке задач гипер-распределения и схемы Бернулли, оба распределения при определенных условиях имеют сходные черты и взаимозаменяемость.
- 3. Приведена оценка асимптотического разложения формулы (1), тем самым установлены границы применимости формулы (2). В расчетах не учтена погрешность, которую вносит приближенная формула Стирлинга. Это сделано намеренно с целью выделения поправки, обусловленной случайной величиной.
- 4. Полученная формула имеет перспективы, поскольку открывают возможность легкого получения предельных теорем теории вероятностей: локальную теорему Муавра-Лапласа и формулу Пуассона. Эти предельные теоремы не будут в точности совпадать с оригиналами, будут отличаться, но их гораздо проще получить из формулы (2), чем из исходного распределения (1).

Список использованной литературы

- 1. Колмогоров А.Н. Основные понятия теории вероятности / А.Н. Колмогоров. М: Наука, 1974 120 с.
- 2. Ширяев А.Н. Вероятность / А.Н. Ширяев. М: Изд. МГУ, 1979. 575 с.
- 3. Феллер В. Введение в теорию вероятностей и ее приложения / В. Феллер. М: Мир, 1964. Т.1. 492 с.
- 4. Брычков Ю.А. Интегралы и ряды. Элементарные функции / Ю.А. Брычков, А.П. Прудников, О.И. Маричев. М: Наука, 1981. 800 с.
- 5. Венцель Е.С. Теория вероятностей / Е.С. Венцель, Л.А. Овчаров. М: Наука, 1969. 368 с.
- 6. Кац М. Статистическая независимость в теории вероятностей / М. Кац. М: ФМЛ, 1962.-153 с.

Надійшла до редакції: Рецензент: 30.01.2012 р. Рецензент: д-р физ.-мат.наук, проф. Малашенко В.В.

L.P. Mironenko. The hipher Geometrical Distribution and the Limiting Theorem. The purpose of the paper is to obtain an asymptotic formula of the hipher geometrical distribution, an estimation of a value of a mistake of the asymptotic expansion. It is shown that the hipher-distribution transits to a formula like Bernoulli's distribution. We defined conditions of the transition to Bernoulli's formula. The theory is compared with the computations.

Keywords: Probability, distribution, trials, binomial, limiting theorems, causality, independent trial, standardized variable, normalization

Л.П. Мироненко. Гіпергеометричний розподіл та гранична теорема. Ціллю статті є отримання граничної формули гіпергеометричного розподілу, оцінка погрішності асимптотичного розподілу. При цьому, встановлено, що гіпер-розподіл переходить в аналог біноміального розподілу. Встановлені умови переходу, отримані відповідні оцінки і розрахунки порівняно з теорією.

Ключові слова: ймовірність, розподіл, випробування, біном, граничні теореми, випадок, незалежність випробувань, норміровка.

© Мироненко Л.П., 2012